
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 4, AUGUST 2016 1321

Formal Specification and Analysis of Partitioning
Operating Systems by Integrating Ontology

and Refinement
Yongwang Zhao, David Sanán, Fuyuan Zhang, and Yang Liu

Abstract—Partitioning operating systems (POSs) have
been widely applied in safety-critical domains from
aerospace to automotive. In order to improve the safety and
the certification process of POSs, the ARINC 653 standard
has been developed and complied with by the mainstream
POSs. Rigorous formalization of ARINC 653 can reveal hid-
den errors in this standard and provide a necessary founda-
tion for formal verification of POSs and ARINC 653 applica-
tions. For the purpose of reusability and efficiency, a novel
methodology by integrating ontology and refinement is pro-
posed to formally specify and analyze POSs in this paper.
An ontology of POSs is developed as an intermediate model
between informal descriptions of ARINC 653 and the formal
specification in Event-B. A semiautomatic translation from
the ontology and ARINC 653 into Event-B is implemented,
which leads to a complete Event-B specification for ARINC
653 compliant POSs. During the formal analysis, six hid-
den errors in ARINC 653 have been discovered and fixed
in the Event-B specification. We also validate the existence
of these errors in two open-source POSs, i.e., XtratuM and
POK. By introducing the ontology, the degree of automatic
verification of the Event-B specification reaches a higher
level.

Index Terms—ARINC 653, Event-B, formal specification,
ontology, OWL2, partitioning operating systems (POSs),
refinement.

I. INTRODUCTION

PARTITIONING operating systems (POSs) [1] are used
to support applications shared access to critical resources

within integrated systems. They provide an independent ex-
ecution of applications by temporal and spatial partitioning.
In order to improve the safety and the certification process of
POSs, the ARINC 653 standard [1] has been developed to stan-
dardize the interface between POSs and application software as

Manuscript received December 03, 2015; revised February 24, 2016,
April 21, 2016, and April 22, 2016; accepted April 29, 2016. Date of
publication May 17, 2016; date of current version August 04, 2016. This
work was supported in part by the National Research Foundation, Prime
Minister’s Office, Singapore, under its National Cybersecurity Research
and Development (R&D) Program and administered by the National Cy-
bersecurity R&D Directorate under Award NRF2014NCRNCR001-30.
Paper no. TII-15-1802.R3. (Corresponding author: Y. Zhao.)

Y. Zhao is with the School of Computer Science and Engineering,
Beihang University, Beijing 100191, China, and also with the School of
Computer Science and Engineering, Nanyang Technological University,
Singapore 639798 (e-mail: zhaoyw@buaa.edu.cn).

D. Sanán, F. Zhang, and Y. Liu are with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore
639798 (e-mail: sanan@ntu.edu.sg; fuzh@ntu.edu.sg; yangliu@ntu.
edu.sg).

Digital Object Identifier 10.1109/TII.2016.2569414

well as the system functionality of POSs. ARINC 653 is a pre-
mier standard of POSs and compliant POSs, such as VxWorks
653, INTEGRITY-178B, LynxOS-178, and PikeOS, have been
widely applied in domains from aerospace to automotive. How-
ever, hidden inconsistencies or incorrectness in this standard
could mislead system developers’ understanding, causing fail-
ures or malfunctions in POSs, and hence a breakdown of ap-
plications. A rigorous and mechanically checked formalization
of ARINC 653 helps to ensure the correctness of ARINC 653.
Moreover, for the purpose of the formal development and ver-
ification of ARINC 653 compliant POSs and applications, for-
mal specification covering most parts of the standard is highly
desirable.

There are three challenges in formalizing and verifying real-
world standards in the scope of POSs. First, due to a combination
of natural languages and textual grammars used in the ARINC
653 standard, a gap between such informal requirements and
formal methods should be addressed [2]. Second, reusability
of the formal specification is important. The formal specifica-
tion should not only be used for formal verification, but also to
improve the automation of development, integration, and man-
agement of systems. Third, formalization and verification of
operating systems (OSs) are usually manpower intensive, e.g.,
20 person-years are invested in the seL4 project [3]. Especially,
the ARINC 653 standard is highly complex, which contains
more than 100 pages of informal descriptions. Therefore, the
efficiency of the formalization and verification is critical.

In order to resolve these challenges, the concepts of ontology
and refinement are integrated to formally specify and analyze
POSs in this study. An ontology typically provides a common
vocabulary to describe a domain of interest. It is a shared un-
derstanding of the domain among people, organizations, and
systems to bridge the gap mentioned above. Due to the in-
teroperability, an ontology can be used for the development,
integration, and management of Integrated Modular Avionics
(IMA) applications and thus improves the reusability of formal
specifications. Refinement is the verifiable transformation of an
abstract specification into a concrete specification and further
into an implementation. The refinement of formal specifications
eases the formalization of complex systems, provides the certifi-
able assurance and safety of POSs, and ensures the consistency
between the design and its implementation by verified code gen-
eration. Finally, the integration of ontology and refinement can
improve the efficiency of the formalization and verification via
the automatic translation.

1551-3203 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html

1322 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 4, AUGUST 2016

This paper presents a novel methodology of formalizing an
informally described standard of POSs—ARINC 653 Part 1 [1],
by integrating ontology and refinement. Unlike existing works
on formalizing POSs, ARINC 653, and even general-purpose
OSs, a Web Ontology Language (OWL2) [4] based ontology
of POSs (OWL-POS) is proposed as an intermediate model to
formalize ARINC 653 using Event-B [5]. Techniques and tools
with industrial maturity are adopted in this study. OWL2 is an
ontology language for the Semantic Web with various concrete
syntaxes that can be used to serialize and exchange ontologies.
It has been applied in industry, such as control systems [6].
Event-B is a refinement-based formal method for system-level
modeling and analysis. It has been applied in industry, such
as satellite software [7] and medical systems [8]. In detail, the
technical contributions of this study are as follows.1

1) An OWL-POS ontology is developed to formally repre-
sent concepts, relations, and constraints of POSs. OWL-
POS is the first ontology in the domains of POSs and
ARINC 653 in the literature.

2) An automatic translation from OWL-POS and an transla-
tion from service requirements in ARINC 653 into Event-
B are proposed to alleviate enormous efforts needed in
the formalization and formal analysis.

3) A complete Event-B specification for ARINC 653 com-
pliant POSs is developed. The Event-B specification cov-
ers the system functionality and all 57 services specified
in ARINC 653 Part 1. This Event-B specification is the
most complete formal specification of ARINC 653 in the
literature.

4) Ninety-five safety properties are specified as invariants
in Event-B. During the formal analysis of the Event-B
specification, six errors in ARINC 653 have been discov-
ered and fixed in the Event-B specification. We also vali-
date the existence of the errors in two major open-source
and ARINC 653 compliant POSs, i.e., XtratuM [9] and
POK [10].

The rest of this paper is organized as follows. In Section II,
we introduce the background and related work. Section III
presents the formalization and analysis methodology. The next
three sections present OWL-POS, the translation into Event-B,
and the Event-B specification, respectively. Then, Section VII
presents the formalization and verification results along with
some discussion. Finally, Section VIII gives the conclusion and
future work.

II. BACKGROUND AND RELATED WORK

A. POSs and ARINC 653

The ARINC 653 standard defines a partitioning architecture
for safety-critical systems on a single-core computing platform.
The major functionalities of POSs are partition/process man-
agement, time management, inter-/intrapartition communica-
tion, and health monitoring. The latest version of ARINC 653
published in 2010 is organized in six parts. Part 1 specifies the

1All deliverables of this study including the ontology, the Event-B specifica-
tion, and all proofs are available at “https://github.com/ywzh/”

Fig. 1. Requirements of the STOP service (from [1, p. 61]).

required services; hence, ARINC 653 compliant POSs are man-
dated to implement this part. Other parts are overview, extended
services, conformity test, subset services, and required capa-
bilities. Thus, this paper focuses on formalizing and verifying
Part 1. Part 1 defines the system functionality of POSs using
more than 40 pages of natural language descriptions. It also
defines service requirements as APplication EXecutive (APEX)
interface using more than 60 pages of descriptions in the APEX
service specification grammar which is a combination of natural
and structural languages. For instance, the STOP service of pro-
cess management presented by the APEX grammar is illustrated
in Fig. 1. In the service requirements, 57 required services are
specified.

B. Preliminaries of OWL2 and Event-B

OWL2 has been standardized by the World Wide Web Con-
sortium as an ontology language for the Semantic Web. OWL2
is capable of creating classes, properties, individuals and defin-
ing operations (e.g., union, intersection) to represent domain
knowledge. It has been widely applied in a large set of research
and application domains.

Event-B uses set theory as a modeling notation, uses refine-
ment to represent systems at different abstraction levels, and
uses mathematical proofs to verify consistencies between levels
of refinements. In this paper, we choose Event-B as the formal-
ism for POSs because of the following.

1) Event-B provides a well-supported language and an envi-
ronment for system specification and refinements. Com-
pared to other system modeling approaches, e.g., Petri
Nets [11], the proof obligations of refinement relations
and invariants can be automatically generated in its de-
velopment environment—RODIN. The high degree of
automatic verification in RODIN alleviates the manual
efforts substantially. Moreover, it has been successfully
applied in the industry [7], [8].

2) The inductive verification approach in Event-B avoids the
state-space explosion problem of automatic approaches
(e.g., model checking) when verifying complex POSs.

3) The concept of event in Event-B is suitable for modeling
OSs, where hardware components, e.g., interrupters like
clocks and timers, need to be well managed.

Event-B models are described in terms of Contexts and Ma-
chines. Each machine may reference (see) a context. Contexts

ZHAO et al.: FORMAL SPECIfiCATION AND ANALYSIS OF PARTITIONING OPERATING SYSTEMS BY INTEGRATING ONTOLOGY AND REfiNEMENT 1323

specify the static part of a model and consist of sets, Constants,
and Axioms. Machines specify the dynamic part and may con-
tain a set of state, Variables; a conjoined list of predicates,
Invariants, to constrain variables; and state transitions (called
Events). Suppose a machine M , referencing a context with Sets
s and Constants c, an event of M is represented as

E =̂ any x where G(s, c, v, x)

then v :| BA(s, c, v, x, v′) end. (1)

E is the event name, x is a list of parameters of the event, v is
a list of variables of the machine, G(s, c, v, x) are guards of the
event that state the necessary condition for the event to occur,
and v :| BA(s, c, v, x, v′) are actions that define how the state
variables evolve when the event occurs. Refinement of machines
in Event-B provides a means for introducing details about the
dynamic properties of a model.

C. Related Work

Formal specification and verification of general-purpose OSs
have been enforced in recent years [12]. A notable project of
them is the formal machine-checked verification of the seL4
microkernel [3]. POSs are very different from general-purpose
OSs, defining a temporal and spatial partitioning, two-level
scheduling, and inter- and intrapartition communications. For-
mal specifications of POSs have been developed in industry and
academia [13]–[15]. Formal verification has been used on POSs
for safety/security certification in the industry, such as ARINC
653 compliant POSs (e.g., PikeOS [16], [17] and INTEGRITY-
178B [18]) and hardware implementations of partitioning (e.g.,
the AAMP7G microprocessor [19]). Some formal models of
POSs in these works are not based on ARINC 653. Others only
cover a small part of functionalities and services in ARINC 653.

Due to the importance of POSs standard in safety-critical sys-
tems, formalization of ARINC 653 has been taken into account
in the literature. Formal specification of the ARINC 653 ar-
chitecture and components has been developed using Circus
language [20], architecture analysis and design language [21]–
[23], and PROMELA in the SPIN model checker [24]. Since the
ARINC 653 services are not the emphasis of these works, only
a small part of services are modeled.

In summary, research works in the literature do not provide a
complete formal specification of ARINC 653 compliant POSs.
Second, the existing formal specification and models of POSs
are developed directly according to informal requirements or
standards using formal methods. There is still a large space to
improve the interoperability and reusability of formal specifi-
cation for system integration and management. Third, formal
verification performed so far usually time-consuming and need
many manual efforts. This paper goes one step further by inte-
grating ontology and refinement.

III. METHODOLOGY

This section introduces the proposed formalization and anal-
ysis methodology, which is shown in Fig. 2. ARINC 653
system functionality defines components and their attributes,

Fig. 2. Overview of methodology.

relations of components, control of components (actions), and
constraints. The actions and services define the behavior of
POSs, while the other elements define the structure of POSs.
We formally model the structural part of ARINC 653 in OWL-
POS (Step 1 in Fig. 2) using the OWL2 editor Protégé to create
OWL-POS. Due to natural language descriptions of the sys-
tem functionality, it is difficult to avoid manually developing
the ontology representation of requirements. In order to reduce
the effort of the formalization and analysis, automatic transla-
tion from OWL-POS into Event-B is enforced (Step 2). The
behavioral part of ARINC 653 is semiautomatically modeled
in Event-B (step 3). Actions in the system functionality are
described in natural language and are manually formalized in
Event-B. Service requirements are described in the APEX gram-
mar, and we design an algorithm to guide their translation into
Event-B. After these translations, we design a set of machines
and contexts in Event-B as well as stepwise refinements between
them to organize the generated models (Steps 4 and 5).

The verification objectives are to check: 1) whether the con-
straints are preserved on the system functionality and all the
services defined in ARINC 653; and 2) whether the services
correctly implement the system functionality. We use invariants
and refinement verification supported in Event-B as the means
for the two objectives, respectively. Proof obligations of invari-
ants and refinement are automatically generated in RODIN (Step
6). In order to improve the degree of automatic verification, au-
tomatic provers (e.g., Atelier B prover) and SMT solvers (e.g.,
CVC3 and Z3) integrated in RODIN are first carried out on the
proof obligations (Step 7). If the proof obligations cannot be au-
tomatically discharged, we try the interactive prover of RODIN
(Step 9). When counterexamples are found, we manually vali-
date the OWL-POS components and ARINC 653 to locate the
errors and revise the formal specification to fix errors (Step 11).

In order to carry out the methodology, two challenges should
be resolved. First, the mathematical foundation of OWL2 is de-
scription logic (DL), while Event-B are created on first-order

1324 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 4, AUGUST 2016

Fig. 3. Part of classes and inheritances in OWL-POS.

logic (FOL) and set theory. In order to translate OWL-POS
into Event-B, the semantic gap between OWL2 and Event-B
has to be bridged. Second, the APEX grammar is a combi-
nation of natural and structural languages, while an Event-B
model is a discrete transition system, where an event is a transi-
tion and occurs when its guard is true. In order to translate the
service requirements in the APEX grammar into Event-B, the
semantic gap between them has to be bridged. In this paper, a
semantic mapping from OWL2 to Event-B (OWL2EB) and an
algorithm (APEX2EB) to guide translation from APEX gram-
mar into Event-B are developed to resolve the two challenges,
respectively.

IV. OWL-POS: AN OWL2 ONTOLOGY OF POSS

This section presents OWL-POS using the Manchester Syntax
in OWL2.

A. Components and Attributes

The data structures of the POS components and their attributes
are represented in the APEX grammar. All these components
and attributes have been captured and formally represented
in OWL-POS. Components are modeled as classes in OWL-
POS. The data types of attributes in ARINC 653 are primitive
data types (e.g., int, bool), enum data types, and composed data
types. Attributes with primitive data types are modeled as data
types. Attributes with enum data type are modeled as classes,
which are subclasses of EnumDataType. Attributes with com-
posed data types are modeled as classes, which are subclasses
of BasicDataType. In OWL-POS, 67 classes are used to de-
fine the POS components. All classes and their inheritances are
shown in Fig. 3 except subclasses of EnumDataType.

We design an inheritance structure of classes for components.
In POSs, partitions, the health monitor (a set of configured ta-
bles, e.g., MultiPartitionHMTable, PartitionHMTable),
and interpartition communication components (e.g., Port,
Channel) are statically configured at system build-time
and initialized during system/partition initialization. Processes
and intrapartition communication components (e.g., Buffer,
Semaphore, Blackboard, Event) are dynamically created
at system runtime. Two classes ConfiguredThing and
CreatedThing, which are subclasses of Thing, are used to
model these two categories of components, respectively. A frag-
ment of OWL-POS in the Manchester syntax is as follows:

Class : Event SubclassOf : CreatedThing

Class : CreatedEvent SubclassOf : Event

Class : Port SubclassOf : ConfiguredThing.

OWL2 does not provide a primitive type to represent enu-
merations. In this paper, a class and a set of individuals are
defined in OWL-POS for each enumeration data type used in
ARINC 653. Possible values of an enumeration are instances
of this class and are represented as individuals. All of these
classes are subclasses of EnumDataType. For instance, the
data structure operating mode is an enumeration. Four individ-
uals (COLD START , WARM START , NORMAL, and
IDLE) and a class OperatingModeType are defined to ex-
press the operating mode of partitions as follows:

Class : OperatingModeT ype SubclassOf : EnumDataT ype

EquivalentTo : {COLD START, IDLE, NORMAL,

W ARM START }.

B. Relations

The relations between components and those between com-
ponents and their attributes are modeled by about 150 ob-
ject/data type properties in the OWL-POS. Each property has a
domain and a range.

We design an inheritance structure of properties in OWL-
POS according to the inheritance structure of classes. The
category of properties, configuedObjectProperty, models
the relations between two configured classes. The category of
properties, createdObjectProperty, models the relations of
created classes. The createdObjectProperty is further cat-
egorized into two subproperties: fixedObjectProperty and
variableObjectProperty. The subproperties of the first cate-
gory cannot be changed after being created. The subproperties
of the second category can be changed at system run-time.

For the properties, OWL2 has the functional restriction to
define a property, which can be seen as a special case of
cardinality constraints. A property R is functional, if every
individual in the domain of R is connected to at most one in-
dividual in the range of R. It does not require every individual
to have a corresponding individual. Thus, a functional prop-
erty is actually a partial function. In POSs, relations between

ZHAO et al.: FORMAL SPECIfiCATION AND ANALYSIS OF PARTITIONING OPERATING SYSTEMS BY INTEGRATING ONTOLOGY AND REfiNEMENT 1325

TABLE I
TYPICAL COMPOSED CONSTRAINTS IN OWL-POS

No. Constraints (Axioms) in OWL-POS Description Invariants in Event-B

(1) partition has OperatingM ode some ({N ORM AL})
SubClassOf : partition hasP rocesses min 1

Partitions in N ORM AL operating mode have at least
one created process.

∀part·(part mode(part) =
P M N ORM AL ⇒

proc of part−1 [{part}] �= ∅)
(2) partition has OperatingM ode some ({IDLE })

SubClassOf : partition has P rocesses max 0
Partitions in IDLE operating mode have no created
processes.

∀part·(part mode(part) =
P M IDLE ⇒ part /∈
ran(proc of part))

(3) partition hasP rocessessome (process hasS tate
some ({READY , RU N N IN G}))
SubClassOf : partition has OperatingM ode
some ({N ORM AL})

Partitions in which there are created processes in
READY and RU N N IN G states are in
N ORM AL operating mode.

∀proc ·((proc state(proc) =
P S R e a d y ∨ proc state(proc) =

P S Running) ⇒
part mode(proc of part(proc)) =

P M N ORM AL)
(4) partition has LockLevel some unsignedInt[<1]

SubClassOf : partition has OperatingM ode
some ({N ORM AL})

Partitions whose lock levels are less than 1 are in
N ORM AL operating mode.

∀p.(locklevel of p a r t (p)< 1 ⇒
part mode(p) = P M N ORM AL)

(5) is a P roc wf QueuingP ort min 1
SubClassOf : process has S tate
some ({W AIT IN G})

Processes which are waiting for a queuing ports are in
W AIT IN G state.

∀port, p.(p ∈
dom (procs wf qports(port)) ⇒

proc state(p) = P S W a i t i n g)

components are usually total functions. This means that each
individual in the domain class of a property has exactly one
corresponding individual in the range class. For instance, ob-
ject property is a Process of Partition defines the relation
from the class CreatedProcess to Partition. Since each cre-
ated process should belong to a partition, this property should
be a total function. For functional property R, where C and
C ′ are the domain and range of R, we add an equivalence
“EquivalentTo : R min 1 C ′” to the class C to represent
that R is a total function.

It is notable that due to the spatial and temporal partition-
ing of POSs, if there is a relation between two components,
the relation or its inversion is a functional relation. Therefore,
each property or its inversion in OWL-POS is a functional
property. For convenience, we define two object properties be-
tween two components. One of them is the inversion of the
other. A fragment of OWL-POS in the Manchester syntax is as
follows:

ObjectProperty : is a Process of Partition

Domain : CreatedProcess Range : Partition

Characteristics : Functional

SubPropertyOf : fixedObjectProperty

InverseOf : partition has Processes

Class : CreatedProcess

EquivalentTo : is a Process of Partition

min 1 Partition.

C. Constraints

The relations in the previous subsection define the restric-
tions between two classes/data types using properties. There
are restrictions between classes that cannot be specified by one
property. These restrictions are called constraints in this paper.
The constraints are categorized into simple constraints, which

are constraints on classes, and composed constraints, which are
constraints on object/data type properties.

Simple constraints define the relation between classes that
cannot be represented by object properties. We use the ex-
pressions Union, Intersection, Disjoint, Subclass, and
Equivalence in simple constraints. A fragment of OWL-POS
of simple constraints is as follows:

Class : SourcePort SubClassOf : Port

DisjointWith : DestinationPort

EquivalentTo : QueuingSrcPort

or SamplingSrcPort.

Composed constraints are expressed as general axioms in
OWL-POS. Sixteen composed constraints are defined. Typi-
cal composed constraints and their descriptions are shown in
columns 2 and 3 of Table I.

V. TRANSLATION INTO EVENT-B

After presenting OWL-POS, this section introduces the ap-
proaches to translating the ontology and APEX services into
Event-B.

A. Translating OWL-POS Into Event-B

The basic mapping in the OWL2EB is shown in Table II. Due
to the inductive verification in Event-B, we can use abstract sets
and relations in Event-B to represent the structural part of AR-
INC 653 and use the axioms and invariants to constrain them.
The state-space problem of formal verification is resolved by
induction. In OWL-POS, each property or its inversion is a func-
tional property, which are both modeled. We use partial and total
functions in Event-B to represent the OWL-POS properties. For
simplicity of the Event-B specification, we only translate func-
tional properties into Event-B. This decision makes the Event-
B specification more concise. Functional properties which are
not total functions are translated into partial functions (� in

1326 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 4, AUGUST 2016

TABLE II
MAPPING OWL-POS (DL) INTO EVENT-B (FOL)

OWL-POS Components Mapping in Event-B

Thing, Nothing U N IV , φ

primitive data type (int, bool, etc.) primitive data type in Event-B
Enum data type CONSTANTS o1 ...on ,

SET C,
P artition(C, {o1 }, ..., {on })

Composed data type SET C

ConfiguredThing C SET C

CreatedThing C VARIABLE C

configured Object/Data Property R CONSTANT R,
Domain : C Range : C ′

Characteristics : F unctional AXIOM R ∈ C � C′
∗EquivalentTo : R min 1 C ′ ∗AXIOM R ∈ C → C′

created Object/Data Property R VARIABLE R

Domain : C Range : C ′

Characteristics : F unctional INVARIANT R ∈ C � C′
∗EquivalentTo : R min 1 C ′ ∗INVARIANT R ∈ C → C′

Simple Constraints: SC INVARIANT/AXIOM SC

C1 and C2 C1 ∩ C2

C1 or C2 C1 ∪ C2

C1 DisjointWith : C2 C1 ∩ C2 = φ

C1 SubclassOf : C2 C1 ⊆ C2

C1 EquivalentTo : C2 C1 = C2

Fig. 4. Semantic mapping from APEX grammar to Event-B.

Event-B). Functional properties with “EquivalentTo :
Rmin 1C ′” in the declaration of the domain class are translated
into total functions (→ in Event-B).

Constraints in OWL-POS are translated into Invariants or
Axioms in Event-B. Since composed constraints are defined
on multiple properties, the generated Invariants are manually
simplified to improve the verification efficiency in Event-B.
Semantics of composed constraints are preserved during this
simplification. In column 4 of Table I, the Invariants in Event-B
of composed constraints are illustrated.

B. Translating Services Into Event-B

A general structure of a service in the APEX grammar
is illustrated in the left part of Fig. 4. The error part de-
scribes error handling due to incorrect values of actual input

parameters. Although ARINC 653 defines a structured language
in APEX grammar to describe the service behavior, we find that
ARINC 653 Part 1 only uses compound statements “IF” and
“SEQUENCE” to describe complex structures. Moreover, sim-
ple actions are described in natural language. Therefore, we
design the APEX2EB translation which concentrates on trans-
lating the structure of APEX services into events. The detailed
behavior of each service represented by simple actions needs to
be modeled by hand.

The semantic mapping from APEX grammar to Event-B is
illustrated in Fig. 4. Event-B does not have the “IF” compound
statement. Therefore, an APEX service should be decomposed
into a set of events with non-intersect guards. That is, if one event
is enabled by its guard, then all of other events are disabled. For
the “IF” statement, its body (e.g., acts11 , acts12 , acts2 , acts3)
are behaviors under different conditions that do not intersect.
Therefore, we use an event to represent the behavior of each
body. The type of parameters of the APEX service is encoded
as guards of each event (p1..n type). In the error part, conditions
gcond1 , gcond2 , etc., indicate incorrect values of parameters,
and thus, their negations are translated into Event-B as guards
of each event. A simple action, such as “set the specified pro-
cess state to DORMANT,” in Fig. 1, is translated into actions
in the event, which is usually represented by a deterministic
assignment, e.g., proc state(p) := PS Dormant.

We have designed the APEX2EB algorithm to guide transla-
tions from APEX service requirements into Event-B models as
shown in Algorithm 1. For convenience, we first give a simple
syntax for the APEX service specification grammar

c :: = ACT act | c; c | IF cond THEN c | IF cond

THEN c ELSE c

ZHAO et al.: FORMAL SPECIfiCATION AND ANALYSIS OF PARTITIONING OPERATING SYSTEMS BY INTEGRATING ONTOLOGY AND REfiNEMENT 1327

Fig. 5. ARINC 653 Part 1 and the Event-B specification.

where “ACT act” is a simple action, and “c; c” is the sequential
statement.

The algorithm translates a service requirement presented in
this syntax into a set of events. The function translate translates
a statement stmt into a set of events. An event in the evts
set is a tuple 〈ι, p, σ, α〉, where ι is the name of the event, p
is a list of parameters, σ is a list of guards, and α is a list
of actions. The translation of simple actions and compound
statements “;” is straightforward. For each “IF” statement, we
duplicate evts into evts′, and add the “IF” conditions as guards
to each event in evts. Then, we add the negated condition to each
event in evts′, therefore obtaining all possible nonintersecting
guards for both “IF.” The function translate service translates
a service requirement spec into the final set of events by invoking
translate. A service requirement is a tuple 〈ζ, P,E, S〉, where
ζ is the service name, P is an input parameter list, E are error
conditions in the error part, and S is a statement of the service’s
normal part. Then, translate service assigns the parameters
of the service to the parameter list of each event, and adds the
negation of the conditions in the error part to the guard list of
each event. Finally, it removes those events with empty actions.
The event name in the final event set is manually renamed
according to its meaning.

VI. EVENT-B SPECIFICATION OF POSS

This section first discusses the refinement structure of the
Event-B specification. Then, some fragments of Event-B and
the invariants are illustrated. Finally, the formal verification ap-
proach on the Event-B specification is presented.

A. Structure of Formal Specification

The document structure of the ARINC 653 standard and the
verification objectives are the major factors to be considered
when designing the specification structure.

The complete document structure and the number of pages of
each section of ARINC 653 Part 1 are shown in the left part of
Fig. 5. The content of ARINC 653 standard is divided into five
parts: overview, system functionality, service requirements, con-

Fig. 6. Excerpt of events and their refinement.

figuration, and verification. The system functionality (including
health monitoring) and service requirements are the main parts
of the standard. Section 1 and subsections 2.1, 2.2, and 3.1 give
an overview of ARINC 653 from different perspectives, which
are a high level description for easy understanding. The con-
figurations described in subsection 2.5 and section 5 define the
information and data format of the system configuration for inte-
gration and deployment. Note that the subsection 2.3.4 memory
management in ARINC 653 does not define any service.

According to the document structure and the verification ob-
jectives discussed in Section III, we design the structure of the
formal specification as shown in the right part of Fig. 5. We first
formalize the system functionality of partition, process, and time
management. The Event-B machine Mach Part Trans mod-
els the partition operating modes. Mach Part Proc Trans
refines the partition operating modes and adds process
state transitions. Mach Part Proc Trans withEvents and
Mach PartProc Manage formalize all the actions in the sys-
tem functionality and the service requirements, respectively.
Then, the system functionality and service requirements of
the communication are added: Mach IPC Conds specifies
the functionality and actions of interpartition and intraparti-
tion communication, and Mach IPC formalizes their service
requirement. Finally, the system functionality and service re-
quirements of the health monitor are formalized in Mach HM .
The Event-B contexts are also designed according to the refine-
ment structure. The Event-B models generated in the previous
sections are moved into corresponding contexts or machines.

B. Events and Refinements

All services in ARINC 653 have been translated into Event-B
as events. In order to verify consistency between the system
functionality and the services, a set of events are designed ac-
cording to the actions on POS components defined in the sys-
tem functionality of ARINC 653. They represent the pre- and
postcondition of each action, which are used to check whether
the services correctly refine the actions. The structure of event
refinement is partially illustrated in Fig. 6, where the event
process state transition is stepwise refined.

In order to clearly present the events in the specification,
examples of events are illustrated in this subsection. The

1328 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 4, AUGUST 2016

semantics of an event are introduced in [5, Ch. 5] in detail. Un-
like general-purpose OSs, process state transitions in POSs are
complex, since process states are dependent on partition operat-
ing modes. Process states and transitions are encoded in Event-B
in the machine Mach PartProc Trans as follows. From the
guard of the process state transition event (grd27), where
“⇒” is the logical implication, we can see the nesting between
partition operating modes and process states.

Process state transitions in Event-B only model the pos-
sible transition path, not the actions of the process control
to trigger the transitions. The actions are modeled in ma-
chine Mach PartProc Trans withEvents as the events
suspend, resume, stop, start, req busy resouce, etc. In these
events, we strengthen the guard of process state transition.
The event req busy resouce is defined as follows. grd07
and grd27 in process state transition are strengthened by
grd04, grd05, and grd06. The event req busy resouce is
refined in Mach PartProc Manage and then extended in
Mach IPC Conds.

process_state_transition =̂ any part proc newstate
where
@grd01 part ∈ PARTITIONS
@grd02 proc ∈ processes
@grd03 newstate ∈ PROCESS STATES
@grd06 proc of part(proc) = part
@grd07 part mode(part) �= PM IDLE

...... //some guards are omitted here

@grd27

(part mode(part) = PM NORMAL∧
proc state(proc) = PS
Running) ⇒ (newstate = PS
Running ∨ newstate = PS
Ready ∨ newstate = PS
Waiting ∨ newstate = PS
Suspend ∨ newstate = PS Dormant)

then
@act01 proc state(proc) := newstate

end
req_busy_resource refines process_state_transition =̂
any part proc newstate
where
@grd01 proc ∈ processes
@grd02 newstate ∈ PROCESS STATES
@grd03 proc of part(proc) = part
@grd04 part mode(part) = PM NORMAL
@grd05 proc state(proc) = PS Running
@grd06 newstate = PS Waiting

then
@act01 proc state(proc) := newstate

end

C. Invariants

Invariants in the Event-B specification represent the safety
properties of POSs. They have two parts: invariants gen-
erated from OWL-POS and invariants manually modeled

according to ARINC 653. Event-B uses FOL and set the-
ory, while the foundation of OWL2 is DL which is a frag-
ment of FOL. Therefore, some constraints of ARINC 653
can be represented in Event-B, but not in OWL-POS. Be-
sides the constraints in OWL-POS, we have extracted a set
of constraints from ARINC 653 and modeled them in the
Event-B specification as invariants. For instance, a semaphore
in ARINC 653 has a maximum value. The current value of
the semaphore must not be larger than the maximum value.
This constraint is not modeled in OWL-POS. We represent it
as an invariant in Event-B ∀p·(value of semaphores(p) ≤
MaxV alue of Semaphores(p)). In the Event-B specifica-
tion, 95 invariants are specified and verified for ARINC 653.

D. Formal Verification Approach

The main verification approach in Event-B is formal reason-
ing of proof obligations, which must be proved to show that
machines have their specified properties. Formal definitions of
all proof obligations are given in [5]. In order to verify the in-
variants preservation and the refinement, proof obligations of
invariants preservation, guard strengthening, and simulation are
mainly used in this paper.

Invariant preservation states that invariants are maintained
whenever variables change their values. Guard strengthening
makes sure that the concrete guards in a concrete event are
stronger than the abstract ones in the abstract event. This ensures
that when a concrete event is enabled, it is also the correspond-
ing abstract one. Simulation makes sure that each action in an
abstract event is correctly simulated in the corresponding refine-
ment. This ensures that when a concrete event is executed, its
action is not contradictory with the action of the corresponding
abstract event.

For instance, for an event E as shown in (1) and an invariant
inv(s, c, v), the generated proof obligation of the invariant on
E is as follows:

A(s, c), I(s, c, v), G(s, c, v, x), BA(s, c, v, x, v′) � inv(s, c, v′)

where A(s, c) is the axioms seen in the machine, I(s, c, v) is
the invariants of the machine, and inv(s, c, v) ∈ I(s, c, v). All
these proof obligations can be generated by the proof-obligation
generator in RODIN and proved by automatic provers, SMT
solvers, and interactive provers.

VII. RESULTS AND DISCUSSION

A. Specification and Proof Statistics

Table III shows the statistics of the OWL-POS ontology and
the Event-B specification. The third column of (b) shows the
numbers of Event-B elements (80% in total) that are translated
from OWL-POS. Since ARINC 653 does not define the runtime
information of scheduling (e.g., the current executing process),
process management (e.g., the deadline time of a process), etc.,
we have to manually model them in the Event-B specification
for the completeness.

Table IV shows the statistics of formal analysis in RODIN.
The lines of code (LOC) of the machines increases gradually

ZHAO et al.: FORMAL SPECIfiCATION AND ANALYSIS OF PARTITIONING OPERATING SYSTEMS BY INTEGRATING ONTOLOGY AND REfiNEMENT 1329

TABLE III
STATISTICS OF FORMAL SPECIFICATION

TABLE IV
STATISTICS OF FORMAL ANALYSIS

Machine LOC POs Automatically Interactively
Proved Proved

Mach_Part_Trans 30 6 6 (100%) 0 (0%)
Mach_PartProc_Trans 223 128 122 (95%) 6 (5%)
Mach_PartProc_Trans_withEvents 474 214 212 (99%) 2 (1%)
Mach_PartProc_Manage 1174 618 609 (99%) 9 (1%)
Mach_IPC_Conds 2405 382 380 (99%) 2 (1%)
Mach_IPC 2588 309 309 (100%) 0 (0%)
Mach_HM 3056 15 15 (100%) 0 (0%)
Total 3056 1672 1653 (99%) 19 (1%)

since the refinement machine is an extension of the refined
machine. More than 1600 proof obligations (POs) are automat-
ically generated in RODIN and 99% of them are automatically
discharged.

B. Errors Found in ARINC 653 and Their Hazards

During formal analysis of the Event-B specification, we find
six errors in ARINC 653 Part 1. The errors cause an incorrect
specification for process management and communications and,
hence, malfunctions of applications. The consequences of the
errors are not allowed in safety-critical systems. All these errors
have been fixed in the Event-B specification.

1) Process State Transitions: An incomplete description
of process state transitions in the system functionality of ARINC
653 is detected. The errors are shown as follows.

1) E1: The service requirement of the RESUME service
indicates that in the COLD/WARM START mode, a
suspended period process can be resumed and its state
transits from Waiting to Waiting. This action is missing
in the “Waiting → Waiting” transition conditions in the
system functionality.

2) E2: The service requirement of the DELAYED_START
service indicates that if an aperiodic process is de-
layed_started (if the delay time > 0) in the NORMAL
mode, its state transits from Dormant to Waiting. This
action is missing in the “Dormant → Waiting” transition
conditions in the system functionality.

3) E3: The service requirement of the DELAYED_START
service also indicates that if an aperiodic process is de-
layed_started (if the delay time = 0) in the NORMAL
mode, its state transits from Dormant to Ready. This ac-
tion is missing in the “Dormant → Ready” transition
conditions in the system functionality.

The incompleteness above is found by veri-
fying the guard strengthening between machine
Mach PartProc Trans withEvents and its refinement
machine Mach PartProc Manage.

2) Process Management Services (E4): The error is
in the service requirement of the RESUME service. In fact,
suspending an aperiodic process that has been delayed_started
causes transition into Waiting state of the process. When that
process is resumed, it should be retained in the Waiting state if
the delay time has not been reached. But in the RESUME service,
the aperiodic process is set into the Ready state. This error is
found by verifying the guard strengthening between the resume
events in the machine Mach PartProc Trans with Events
and Mach PartProc Manage.

3) Communication Services: We find two errors in the
requirements of the communication services.

1) E5: The error is in the
SEND QUEUING MESSAGE service in in-
terpartition communication. The service is used to
send a message via a specified queuing port. The
system functionality requires that if there is not enough
space in the queuing port to accept the message, the
process is blocked and stays in the waiting queue
until the specified time-out expires (in this case, the
message is lost) or space becomes free (in this case,
the message is inserted into the port’s message queue).
However, in the service specification when space
becomes free before the expiration of the time-out,
the sent message is not inserted into the message
queue. This error is found by verifying the simulation
of the events send queuing message needwait
and wakeup waitproc on srcqueports between the
machines Mach IPC Conds and Mach IPC.

2) E6: The error is in the RECEIVE_BUFFER service in
intrapartition communication. This service is used to
receive a message from a specified buffer. The sys-
tem functionality requires when the buffer is not empty,
then the receiving process can receive a message di-
rectly, and the message has to be removed from the
message queue of this buffer. But in the service spec-
ification, we find that the received message is not re-
moved. This error is found by verifying the simula-
tion of the event receive buffer between the machines
Mach IPC Conds and Mach IPC.

C. Validation of Open-Source POSs

The incompleteness of process state transitions are errors
about incomplete description of ARINC 653 itself. Thus, we
only manually validate the other three errors in XtratuM and
POK, which implement the ARINC 653 services, discovering
that one of these errors exists in the validated POSs.

XtratuM is a separation hypervisor aiming at providing a
framework to run several OSs in a partitioned environment. The
version of XtratuM we validate is v3.7.3 for SPARC v8 archi-
tecture. Since XtratuM is a hypervisor, the processes/threads in
partitions are managed by guest OSs. Therefore, XtratuM does

1330 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 12, NO. 4, AUGUST 2016

not implement the RESUME and SEND_BUFFER services. On
the other hand, the syscall SendQueuingPort is used to imple-
ment the SEND_QUEUING_MESSAGE service, but the syscall
does not implement the TIME_OUT parameter as specified in
the service. Due to the incomplete implementation of ARINC
653 in XtratuM, errors E4, E5, and E6 are not found in XtratuM.

POK is a POS for safety-critical systems. The version of
POK we validate is the latest one released in 2014. POK im-
plements all APEX services. The syscall pok_thread_resume
is used to implement the RESUME service. In this syscall, the
state of a resumed thread is set to POK_STATE_RUNNABLE
(i.e., PS_Ready in this paper) without any judgment. Therefore,
the error E4 exists in POK. The errors E5 and E6 are not found
in POK.

D. Discussion

1) Effectiveness of the OWL-POS Ontology: Due to the
RDF/XML-based formation of OWL2, the interoperability of
OWL-POS is guaranteed. OWL-POS reduces not only the ef-
forts of developing the Event-B specification by translation, but
also the cost of formal verification. Except the events which
are translated from service requirements of ARINC 653, 80%
of Event-B elements are translated from OWL-POS. Moreover,
OWL-POS representation of ARINC 653 regulates the gener-
ated sets, axioms, and invariants in Event-B. Thus, the degree of
automatic verification of the Event-B specification is increased.
In our previous paper [25], we have developed an Event-B spec-
ification of ARINC 653 according to the standard directly. The
degree of automatic verification of Event-B proof obligations
is 83%. By integrating the ontology technology and Event-B,
the number of interactively proved proof obligations decreases
from 300 to 19. Thus, the degree of automatic verification of
Event-B proof obligations is promoted to 99%. It is certain that
the manual creation of the ontology using the Protégé editor is
quite time-consuming and the usage of the OWL-POS ontology
leads to an increment of the design cycle time. However, the
creation of OWL-POS is a one-time process and OWL-POS is
reusable.

2) Completeness of Event-B Specification: Although
we have formalized all of ARINC 653 services and the sys-
tem functionality, some implementation-related details of POSs
are not specified in ARINC 653 Part 1 and not covered in our
formalization.

1) Since ARINC 653 specifies nothing about the booting
process, the booting/initialization of the POSs is not mod-
eled in the Event-B specification.

2) Since the initialization of partitions is not specified in
ARINC 653, only an abstract specification of the partition
initialization is defined in the Event-B specification.

3) Partition switch is not specified in ARINC 653 and it is
omitted in the Event-B specification.

For the purpose of verifying the ARINC standard or ARINC-
based applications, these eliminations do not affect the verifica-
tion result. However, these details should be implemented when
formally developing POSs from the ARINC 653 standard.

3) Reusability of the Formal Specification: The Event-B
specification of ARINC 653 defines the abstract specification of
POSs. The specification can be used in the model-based devel-
opment and the verification of POSs. Composition of the Event-
B specification and application models enables the simulation,
analysis, and verification for IMA systems. On the other hand,
the Event-B specification provides the possibility of formally
developing a new POS by refinement and further automatic
code generation. The RODIN environment provides many code
generation plug-ins for C, C++, Java, and Ada. The difficulty of
code generation may come from the hardware dependency of
POSs and the efficiency of the generated code. The source code
of POSs usually has some intrinsic patterns and contains assem-
bly code. It requires that the Event-B specification is detailed
enough and the code generation in RODIN need to be revised
accordingly.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a general methodology for
formalizing informal standards or requirements by integrating
ontology and refinement. The OWL-POS ontology for POSs
has been developed as the intermediate model between AR-
INC 653 and Event-B. By semi-automatic translation from the
APEX grammar and OWL-POS into Event-B, a complete Event-
B specification for ARINC 653 compliant POSs has been de-
veloped in this paper. During formal analysis, a few significant
problems in ARINC 653 have been discovered. We have also
found some errors in open-source POSs by validation. The for-
mal specification could be a foundation in the life cycle of POSs
and IMA applications. The proposed methodology is applicable
to formalization and verification of systems in accordance with
informal standards and requirements.

In future work, since ARINC 653 is being considered to sup-
port multicore platform, we will develop formal specification
of multicore POSs. Second, we consider to refine the formal
specification in this paper to a low-level design and develop ver-
ification approaches to formally analyze ARINC 653 compliant
POSs on source-code level.

REFERENCES

[1] ARINC Specification 653: Avionics Application Software Standard In-
terface, Part 1—Required Services, Aeronautical Radio, Inc., Annapolis,
MD, USA, Nov. 2010.

[2] M. Fraser, K. Kumar, and V. Vaishnavi, “Informal and Formal Require-
ments Specification Languages: Bridging the Gap,” IEEE Trans. Softw.
Eng., vol. 17, no. 5, pp. 454–466, May 1991.

[3] G. Klein et al., “Comprehensive Formal Verification of an OS Microker-
nel,” ACM Trans. Comput. Syst., vol. 32, no. 1, pp. 1–70, Feb. 2014.

[4] OWL 2 Web Ontology Language Primer, 2nd ed., W3C, Cambridge, MA,
USA, Dec. 2012.

[5] J. Abrial, Modeling in Event-B: System and Software Engineering. New
York, NY, USA: Cambridge Univ. Press, 2013.

[6] W. Dai, V. N. Dubinin, and V. Vyatkin, “Automatically generated layered
ontological models for semantic analysis of component-based control sys-
tems,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 2124–2136, Nov. 2013.

[7] A. Iliasov et al., “Developing mode-rich satellite software by refinement
in Event-B,” Sci. Comput. Program., vol. 78, no. 7, pp. 884–905, Jul. 2013.

[8] D. Méry and N. K. Singh, “Formal specification of medical systems by
proof-based refinement,” ACM Trans. Embedded Comput. Syst., vol. 12,
no. 1, pp. 1–25, Jan. 2013.

[9] XtratuM Hypervisor. [Online]. (2015) Available: http://www.xtratum.org/

ZHAO et al.: FORMAL SPECIfiCATION AND ANALYSIS OF PARTITIONING OPERATING SYSTEMS BY INTEGRATING ONTOLOGY AND REfiNEMENT 1331

[10] POK. [Online]. (2015) Available: http://pok.tuxfamily.org/
[11] J. Peterson, Petri Net Theory and the Modeling of Systems. Englewood

Cliffs, NJ, USA: Prentice-Hall, 1981.
[12] G. Klein, “Operating system verification—An overview,” Sadhana,

vol. 34, no. 1, pp. 27–69, Feb. 2009.
[13] F. Verbeek et al., “Formal specification of a generic separation ker-

nel,” Arch. Formal Proofs, 2014. Available at: http//www.isa-afp.org/
entries/CISC-Kernel.shtml

[14] D. Sanán, A. Butterfield, and M. Hinchey, “Separation kernel verification:
The Xtratum case study,” in Verified Software: Theories, Tools and Exper-
iments (ser. LNCS), vol. 8471. Berlin, Germany: Springer-Verlag, 2014,
pp. 133–149.

[15] F. Verbeek et al., “Formal API Specification of the PikeOS separation ker-
nel,” in NASA Formal Methods (ser. LNCS), vol. 9058. Berlin, Germany:
Springer-Verlag, 2015, pp. 375–389.

[16] C. Baumann, T. Bormer, H. Blasum, and S. Tverdyshev, “Proving memory
separation in a microkernel by code level verification,” in Proc.14th IEEE
Int. Symp. Object/Compon./Service-Oriented Real-Time Distrib. Comput.
Workshops, Newport Beach, CA, USA, Mar. 2011, pp. 25–32.

[17] S. Tverdyshev, “Extending the GWV security policy and its modular
application to a separation kernel,” in NASA Formal Methods (ser. LNCS),
vol. 6617. Berlin, Germany: Springer-Verlag, 2011, pp. 391–405.

[18] R. Richards, “Modeling and security analysis of a commercial real-time
operating system kernel,” in Design and Verification of Microprocessor
Systems for High-Assurance Applications. New York, NY, USA: Springer,
2010, pp. 301–322.

[19] M. Wilding, D. Greve, R. Richards, and D. Hardin, “Formal verification of
partition management for the AAMP7G microprocessor,” in Design and
Verification of Microprocessor Systems for High-Assurance Applications.
New York, NY, USA: Springer, 2010, pp. 175–191.

[20] A. Gomes, “Formal specification of the ARINC 653 architecture using
circus,” M.Sc. thesis, Dept. Comput. Sci., Univ. York, York, U.K., 2012.

[21] Y. Wang, D. Ma, Y. Zhao, L. Zou, and X. Zhao, “An AADL-based model-
ing method for ARINC653-based avionics software,” in Proc. IEEE 35th
Annu. Comput. Softw. Appl. Conf., Munich, Germany, Jul. 2011, pp. 224–
229.

[22] J. Delange, L. Pautet, and F. Kordon, “Modeling and Validation of AR-
INC653 architectures,” in Proc. Embedded Real Time Softw. Syst. Conf.,
Toulouse, France, May 2010, pp. 1–8.

[23] F. Singhoff and A. Plantec, “AADL modeling and analysis of hierarchical
schedulers,” ACM SIGAda Ada Lett., vol. 27, no. 3, pp. 41–50, Dec. 2007.

[24] P. Cámara, J. Castro, M. Gallardo, and P. Merino, “Verification support
for ARINC-653-based Avionics software,” Softw. Test. Verif. Rel., vol. 21,
no. 4, pp. 267–298, Jan. 2011.

[25] Y. Zhao, Z. Yang, D. Sanán, and Y. Liu, “Event-based formalization of
safety-critical operating system standards: An experience report on AR-
INC 653 using Event-B,” in Proc. Int. Symp. Softw. Rel. Eng., Nov. 2015,
pp. 281–292.

Yongwang Zhao received the B.S. degree in
information systems from the Beijing Informa-
tion Technology Institute, Beijing, China, in 2002,
and the Ph.D. degree in computer science from
Beihang University, Beijing, in 2009.

In 2009, he joined the School of Computer
Science and Engineering, Beihang University,
as an Assistant Professor. He has also been a
Research Fellow with the School of Computer
Science and Engineering, Nanyang Technolog-
ical University, Singapore, since 2015. His re-

search interests include formal methods, real-time operating systems,
and architecture analysis and design language.

Dr. Zhao is a senior member of the China Computer Federation and
a member of the Association of Computing Machinery.

David Sanán received the M.S. degree in com-
puter science, and the Ph.D. degree in software
engineering and artificial intelligence from the
University of Málaga, Málaga, Spain, in 2003
and 2009, respectively.

He was a Research Fellow at the Singapore
University of Technology and Design, Singa-
pore; Trinity College Dublin, Dublin, Ireland; and
the National University of Singapore, Singapore.
In 2015, he joined Nanyang Technological Uni-
versity, Singapore, where he is currently a Re-

search Fellow. His research interests include formal methods and, in
particular, the verification of software. In the past, he developed tech-
niques for the verification of software using model checking. His current
research topic is in the formalization and verification of separation mi-
crokernels aiming multicore architectures.

Fuyuan Zhang received the B.S. degree in in-
formation security from the Beijing University of
Posts and Telecommunications, Beijing, China,
in 2006; the M.Eng. degree in software engineer-
ing from Shanghai Jiao Tong University, Shang-
hai, China, in 2009; and the Ph.D. degree in com-
puter science from the Technical University of
Denmark, Kongens Lyngby, Denmark, in 2012.

He is currently a Research Fellow with
the School of Physical and Mathematical Sci-
ences, Nanyang Technological University, Sin-

gapore. His research interests include formal verification of IT systems,
computer security, and quantum computation.

Yang Liu received the bachelor’s and Ph.D. de-
grees in computer science from the National Uni-
versity of Singapore (NUS), Singapore, in 2005
and 2010, respectively.

He was a Post-Doctoral Researcher at NUS.
In 2012, he joined Nanyang Technological Uni-
versity, Singapore, as an Assistant Professor.
His research interests include software engi-
neering, formal methods, and security. Partic-
ularly, he specializes in software verification us-
ing model checking techniques. This work led to

the development of a state-of-the art model checker, Process Analysis
Toolkit.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

