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Abstract. Reactive systems are composed of a well defined set of event han-
dlers by which the system responds to environment stimulus. In concurrent envi-
ronments, event handlers can interact with the execution of other handlers such
as hardware interruptions in preemptive systems, or other instances of the reac-
tive system in multicore architectures. The rely-guarantee technique is a suitable
approach for the specification and verification of reactive systems. However, the
languages in existing rely-guarantee implementations are designed only for “pure
programs”, simulating reactive systems makes the program and rely-guarantee
conditions unnecessary complicated. In this paper, we decouple the system reac-
tions and programs using a rely-guarantee interface, and develop PiCore, a para-
metric rely-guarantee framework for concurrent reactive systems. PiCore has a
two-level inference system to reason on events and programs associated to events.
The rely-guarantee interface between the two levels allows the reusability of ex-
isting languages and their rely-guarantee proof systems for programs. In this work
we show how to integrate in PiCore two existing rely-guarantee proof systems.
This work has been fully mechanized in Isabelle/HOL. As a case study, we have
applied PiCore to the concurrent buddy memory allocation of a real-world OS,
providing a verified low-level specification and revealing bugs in the C code.

1 Introduction

Nowadays high-assurance systems are often designed as concurrent reactive system-
s (CRSs) [3]. CRSs react to their computing environment by executing a sequence of
commands under an input event. Some examples of CRSs are operating systems (OSs),
control systems, and communication systems, whose implementation follows an event-
driven paradigm. The rely-guarantee technique [16] represents a fundamental approach
to compositional reasoning of concurrent programs with shared variables, where pro-
grams are represented in imperative languages with extensions for concurrency. Whilst
rely-guarantee provides a general framework and can certainly be applied for CRSs,
the languages in existing mechanizations of rely-guarantee (e.g. [28,23,18,20,24]) are
imperative and designed only for pure programs, i.e, programs following a flow of pro-
cedure calls from an entry point. Examples of reactive systems mentioned above are far
more complex than pure programs because they involve many different agents and also
heavy interactions with their environment. Without statements for such system behav-
ior, we often use imperative programs to simulate them and make the formal specifi-
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cation cumbersome, in particular for rely-guarantee conditions. The motivation of this
paper will be presented in detail in Section 2.

In this paper, we propose PiCore, a two-level event-based rely-guarantee framework
for CRSs (Section 3). PiCore detaches the specification and the logic of the reactive
aspect of systems from event behaviours. Rather than creating yet another framework
for modelling and reasoning on events behaviour, PiCore allows to reuse existing rely-
guarantee frameworks. The top level introduces the notion of “events” [6,2] into the
rely-guarantee method for system reactions. This level defines the events composing
a system, and how and when they are triggered. It specifies the language, semantics,
and mechanisms to reason on sequences of events and their execution conditions. The
second level focuses on the specification and reasoning of the behaviour of the events
in the first level. PiCore parameterizes the second level using a rely-guarantee interface
and thus allows to easily reuse existing rely-guarantee frameworks. This design allows
PiCore to be independent of the language used to model the behaviour of events.

We have integrated two existing languages and their rely-guarantee proof systems
into the PiCore framework. As a result we create two instances of PiCore: πIMP and
πCSimpl (Section 4). πIMP integrates the HOL-Hoare Parallel library in Isabelle/HOL
that uses a general imperative language [23]. πCSimpl integrates the CSimpl language
in [24]. CSimpl is a generic and realistic imperative language by extending Simpl [25]
and providing a rely-guarantee proof system in Isabelle/HOL. Simpl is able to represent
a large subset of C99 code and has been applied to the formal verification of seL4 OS
kernel [17] at C code level.

We have developed the PiCore framework and its integration with the two languages
in Isabelle/HOL, the sources are available at http://lvpgroup.github.io/picore/. As a case
study, we have applied PiCore to the formal specification and mechanized proof of the
concurrent buddy memory allocation of a real-world OS, Zephyr RTOS [1] (Section 5).
The formal specification represented in πIMP is fine-grained providing a high level of
detail. It closely follows the Zephyr C code, covering all the data structures and imper-
ative statements present in the implementation. We use the rely-guarantee proof system
in πIMP for the formal verification of functional correctness and invariant preservation
in the model, revealing three bugs in the C code.

2 Motivation and Approach Overview

Reactive systems respond to continuous stimulus from their computing environment
[12] by changing their state and, in turn, affecting their environment by sending back
signals to it or initiating other operations. We consider concurrent reactive systems
(CRSs), which may involve many different competitive agents executing concurrently
with shared resources due to multicore setting, task preemption or embedded interrupt-
s, e.g. concurrent OS kernels [7,27] and interrupt driven control systems, where the
execution of handlers is not atomic. Moreover, the configuration and context of un-
derlying hardware of systems are not usually encoded in programs, which represent
only a portion of the whole system behaviour. For instance, although interrupt handlers
(e.g. kernel services and scheduling) in OS kernels are programmed in the C language,

http://lvpgroup.github.io/picore/
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when and how interrupts are triggered and which handlers are invoked to react with an
interrupt are out of the handler code.

In the setting of imperative languages, CRSs are usually modelled as the parallel
composition of reactive systems, each of which is simulated by a while(true) loop pro-
gram with reading data from its environment and invoking the relevant handlers in the
loop body (e.g. [4]). First, it is non-deterministically decided by the environment which
event handler is triggered and what are the arguments of the handler for this triggering.
Second, some critical properties, such as noninterference of OS kernels [21], concern
the traces of reactions rather than the program states only. Without native supports in
language semantics, the while loop programs have to use auxiliary logical/program vari-
ables to simulate the two non-determinisms together and store the event context of each
reactive system. This will make the program and the rely-guarantee conditions unnec-
essary complicated, in particular for realistic CRSs with many event handlers.

EVENT alloc [Ref p, Nat size, Int tout] @ κ
WHEN

p ∈ ´mem-pools ∧ timeout ≥ −1
THEN

......
IF timeout > 0 THEN

´endt := ´endt(t := ´tick + timeout)
FI;
......

END

Fig. 1: An Example of Event

The reason of above problems are lack
of a rely-guarantee approach for system re-
actions and, as a result, the mixture of sys-
tem and program behavior together. In this
paper, we take the level of abstraction and
reusability of the rely-guarantee method a
step further by decoupling the two level-
s using a rely-guarantee interface. The re-
sult is a flexible rely-guarantee framework
for CRSs, which is able to integrate exist-
ing rely-guarantee implementations at pro-
gram level being unchanged. At system re-
action level, we consider a reactive system as a set of event handlers called event systems
responding to stimulus from the environment. Fig. 1 illustrates an event, which has an
event name, a list of input parameters, a guard condition to determine the conditions
triggering the event, and an imperative program as its body. In addition to the input
parameters, an event has a special parameter κ which indicates the execution context,
e.g. the thread invoking the service and the external devices triggering the interrupt. The
execution of an event system concerns the continuous evaluation of the guards of the
events with special arguments. From the set of events for which the associated guard
condition holds in the current state, one event is non-deterministically selected to be
triggered, and its body executed. After the event finishes, the evaluation of the guards
starts again looking for the next event to be executed. We call reactive semantics to the
semantics of event systems and they store the event context, i.e. which event is current-
ly executing. A CRS is modeled as the parallel composition of event systems which
interleaves their execution.

As shown in the Zephyr case study in Section 5, the formal specification of CRSs
with support for reactions and their composition is much simpler than those represented
by pure programs. Furthermore, PiCore supports verifying total correctness of events,
whose execution is usually assumed to be terminating, as well as the properties of event
systems, whose execution is often non-terminating.
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3 PiCore: The Rely-guarantee Framework

This section introduces the event language in PiCore as well as its rely-guarantee proof
system, the soundness of proof rules and invariant verification.

3.1 The Event Language

Event:
E ::= Event (l, g, P ) (Basic Event)

| bP c (Triggered Event)

Event System:
S ::= {E0, ..., En} (Event Set)

| E . S (Event Sequence)

Parallel Event System:
PS ::= K → S

Fig. 2: Abstract Syntax of PiCore

The abstract syntax of PiCore and its se-
mantics are shown in Fig. 2 and 3 respec-
tively. The syntax for events distinguish-
es basic events pending to be triggered
from already triggered events that are un-
der execution. A basic event is defined as
Event (l, g, P ), where l is the event name,
g the guard condition, and P the body of
the event. Event (l, g, P ) is triggered when
g holds in the current state. Then, its body
begins to be executed (BASICEVT rule in
Fig. 3) and it becomes a triggered even-

t bP c. The execution of bP c just simulates the program P (see TRGDEVT rule in Fig.
3). ⊥ is the notation to represent the termination of programs. Instead of defining a lan-
guage for programs, PiCore reuses existing languages and their rely-guarantee proof
systems, which will be discussed in Section 4. Events are parametrized in the meta-
logic with the list of input parameters of the event plist, and the event system identifier
κ that the event belongs to. These parameters are not part of the syntax of events to make
the rely and guarantee relations more flexible, allowing to define different instances of
the relations for different values of plist and κ.

The event system has two forms that we call event sequence and event set. The event
sequence models the sequential execution of events. The execution of an event set con-
sists of a continuous evaluation of the guards of the events in the set. When there is an
event Event (l, g, P ) in the set where g holds in the current state, the event is triggered
(EVTSET rule) and its body P executed (EVTSEQ1 rule). After P finishes, the eval-
uation of the guards starts again looking for the next event to be executed (EVTSEQ2
rule). A CRS is modeled by a parallel composition of event systems with shared states.
It is a function from K to event systems, where K indicates the identifiers of event sys-
tems. This design is more general and could be applied to track executing events. For
instance, we use K to represent the core identifier in multicore systems.

The semantics of PiCore is defined via transition rules between configurations. We
define a configuration C in PiCore as a triple (], s, x) where ] is a specification, s is a
state, and x : K → E is an event context. The event context indicates which event is
currently being executed in an event system k. Transition rules in events, event systems,
and parallel event systems have the form Σ ` (]1, s1, x1)

δ−→� (]2, s2, x2), where
δ = t@κ is a label indicating the type of transition, the subscript “�” (e, es or pes)
indicates the transition objects, andΣ is used for some static configuration for programs
(e.g. an environment for procedure declarations). Here t indicates a program action c
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[BASICEVT]
body(α) 6=⊥ s ∈ guard(α) x′ = x(k 7→ Event α)

Σ ` (Event α, s, x) Event α@κ−→ e (bbody(α)c, s, x′)

[TRGDEVT]
Σ ` (P, s)−→p(P ′, s′)

Σ ` (bP c, s, x) c@k−→e (bP ′c, s′, x)

[EVTSET]

i ≤ n Σ ` (Ei, s, x)
Ei@κ−→ e (E ′i , s, x′)

Σ ` ({E0, ..., En}, s, x)
Ei@κ−→ es (E ′i . {E0, ..., En}, s, x′)

[EVTSEQ1]

Σ ` (E, s, x) t@κ−→e (E ′, s′, x′) E ′ 6= b⊥c

Σ ` (E . S, s, x) t@κ−→es (E ′ . S, s′, x′)

[EVTSEQ2]

Σ ` (E, s, x) t@κ−→e (b⊥c, s′, x′)

Σ ` (E . S, s, x) t@κ−→es (S, s′, x′)

[PAR]

Σ ` (PS(κ), s, x) t@κ−→es (S′, s′, x′) PS′ = PS(κ 7→ S′)

Σ ` (PS, s, x) t@κ−→pes (PS′, s′, x′)

Fig. 3: Operational Semantics of PiCore

or an occurrence of an event E . @κ means that the action occurs in event system κ.
Environment transition rules have the form Σ ` (], s, x)

e−→� (], s′, x′). Intuitively,
a transition made by the environment may change the state and the event context but
not the specification. The parallel composition of event systems is fine-grained since
small steps in events are interleaved in the semantics of PiCore. This design relaxes the
atomicity of events in other approaches (e.g., Event-B [2]).

A computation of PiCore is a sequence of transitions. We define the set of compu-
tations of all parallel event systems with static information Σ as Ψ(Σ), which is a set
of lists of configurations inductively defined as follows. The singleton list is always a
computation (1). Two consecutive configurations are part of a computation if they are
the initial and final configurations of an environment (2) or action transition (3). The
operator # in e#l represents the insertion of element e in list l.

(1)[(PS, s, x)] ∈ Ψ(Σ)

(2)(PS, s1, x1)#cs ∈ Ψ(Σ) =⇒ (PS, s2, x2)#(PS, s1, x1)#cs ∈ Ψ(Σ)

(3)Σ ` (PS2, s2, x2)
δ−→pes (PS1, s1, x1) ∧ (PS1, s1, x1)#cs ∈ Ψ(Σ)

=⇒ (PS2, s2, x2)#(PS1, s1, x1)#cs ∈ Ψ(Σ)

Computations for events and event systems are defined in a similar way. We use
Ψ(Σ,PS) to denote the set of computations of a parallel event systemPS . The function
Ψ(Σ,PS, s, x) denotes the computations of PS starting up from an initial state s and
event context x.

3.2 Rely-guarantee Proof System

We consider the verification of two different kinds of properties in the rely-guarantee
proof system for reactive systems: pre and post conditions of events and invariants in
the fine-grained execution of events. We use the former for the verification of functional
correctness of the event, where the pre and post conditions have to be respectively satis-
fied only before and after the execution of the event. The latter is used on the verification
of safety properties concerning the small steps inside events and that must be preserved
by any internal step of the event. For instance, in the case of Zephyr RTOS, a safety
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property is that memory blocks do not overlap each other even during internal steps of
the alloc and free services. Other critical properties can also be defined considering the
execution trace of events, e.g. noninterference [21,19,22].

A rely-guarantee specification in PiCore is a quadruple 〈pre,R,G, pst〉, where pre
is the precondition, R is the rely condition, G is the guarantee condition, and pst is
the post condition. The assumption and commitment functions are denoted by A and C
respectively. For each computation$ ∈ Ψ(Σ, E), we use$i to denote the configuration
at index i. ]$i

, s$i
, and z$i

represents an element of $i = (], s, x).

A(Σ, pre,R) ≡ {$ | s$0 ∈ pre ∧ (∀i < len($)− 1. (Σ ` $i
e−→ $i+1) −→ (s$i , s$i+1 ) ∈ R)}

C(Σ,G, pst) ≡ {$ | (∀i < len($)− 1. (Σ ` $i
δ−→e $i+1) −→ (s$i , s$i+1 ) ∈ G)

∧ (]last($) = b⊥c −→ s$n ∈ pst)}

We define validity of rely-guarantee specification for events as

Σ |= E sat 〈pre,R,G, pst〉 ≡ ∀s, x. Ψ(Σ, E , s, x) ∩A(Σ, pre,R) ⊆ C(Σ,G, pst)

Intuitively, validity represents that the set of computations cpts starting at the con-
figuration (E , s, x), with s ∈ pre and environment transitions in a computation cpt ∈
cpts belonging to the rely relationR, is a subset of the set of computations where action
transitions belong to the guarantee relation G and if an event terminates, then the final
states belongs to pst. Validity for event systems and parallel event systems are defined
in a similar way.

Next, we present the rely-guarantee proof rules in PiCore and their soundness w.r.t
the validity. The proof rules are shown in Fig. 4, which gives us a relational proof
method for concurrent systems. We first define stable(f, g) ≡ ∀x, y. x ∈ f ∧ (x, y) ∈
g −→ y ∈ f . Thus, stable(pre, rely) means that the precondition is stable when
the rely condition holds. Rules may stability of the precondition with regards the rely
relation stable(pre,R) to ensure that the precondition holds during the environment
transitions.

The TRGDEVT inference rule says that a triggered event bP c satisfies the rely-
guarantee specification if the program P satisfies the specification. This rule is directly
derived from the semantics for triggered events in Fig. 3, where triggered events mod-
ifies the state according to how the program modifies the state. A basic event satisfies
its rely-guarantee specification (inference rule BASICEVNT) if its body satisfies the
rely-guarantee strengthening the precondition with the guard of the event. Since the oc-
currence of an event does not change the state, it is necessary that the guarantee relation
includes the identity relation to accept stuttering transitions.

Regarding the proof rules for event systems, sequential composition of events is
modeled by EVTSEQ rule, which is similar to that of the sequential command in im-
perative languages. In order to prove that an event set satisfies its rely-guarantee spec-
ification, we have to prove eight premises (EVTSET rule in Fig. 4). It is necessary that
each event together with its specification is derivable in the system (Premise 1). Since
the event set behaves as itself after an event finishes, each event postcondition has to
imply each event precondition (Premise 2), and the precondition for the event set has
to imply the preconditions of all events (Premise 3). An environment transition for the
event set corresponds to a transition from the environment of any event i in the event



7

[BASICEVT]
Σ ` body(α) sat 〈pre ∩ guard(α), R,G, pst〉
stable(pre,R) ∀s. (s, s) ∈ G

Σ ` Event α sat 〈pre,R,G, pst〉

[CONSEQ]
pre ⊆ pre′ R ⊆ R′ G′ ⊆ G pst′ ⊆ pst
Σ ` ] sat 〈pre′, R′, G′, pst′〉

Σ ` ] sat 〈pre,R,G, pst〉

[TRGEVT]
Σ ` P sat 〈pre,R,G, pst〉

Σ ` (bP c) sat 〈pre,R,G, pst〉

[EVTSEQ]
Σ ` E sat 〈pre,R,G,m〉 Σ ` S sat 〈m,R,G, pst〉

Σ ` (E . S) sat 〈pre,R,G, pst〉

[EVTSET]
(1)∀i ≤ n. Σ ` Ei sat 〈presi, Rsi, Gsi, pstsi〉 (2)∀i, j ≤ n. pstsi ⊆ presj
(3)∀i ≤ n. pre ⊆ presi (4)∀i ≤ n. R ⊆ Rsi (5)∀i ≤ n. Gsi ⊆ G
(6)∀i ≤ n. pstsi ⊆ pst (7)stable(pre,R) (8)∀s. (s, s) ∈ G

Σ ` ({E0, ..., En}) sat 〈pre,R,G, pst〉

[PAR]
(1)∀κ. Σ ` PS(κ) sat 〈presκ, Rsκ, Gsκ, pstsκ〉 (2)∀κ. pre ⊆ presκ (3)∀κ. R ⊆ Rsκ
(4)∀κ. Gsκ ⊆ G (5)∀κ. pstsκ ⊆ pst (6)∀κ, κ′. κ 6= κ′ −→ Gsκ ⊆ Rsκ′

Σ ` PS sat 〈pre,R,G, pst〉

Fig. 4: Rely-guarantee Proof Rules for PiCore

set (Premise 4). The guarantee condition Gsi of each event must be in the guarantee
condition of the event set, since an action transition of the event set is performed by one
of its events (Premise 5). The postcondition of each event must be in the overall post-
condition (Premise 6). The last two refer to stability of the precondition and identity of
the guarantee relation.

The parallel rule in Fig. 4 establishes compositionality of the proof system, where
verification of the parallel specification can be reduced to the verification of individual
event systems and then to the verification of individual events. It is necessary that each
event system PS(κ) satisfies its specification 〈presκ, Rsκ, Gsκ, pstsκ〉 (Premise 1).
The precondition for the parallel composition implies all the event system’s precondi-
tions (Premise 2). An environment transition Rsκ for the event system κ corresponds
to a transition from the overall environment R (Premise 3). Since an action transition
of the concurrent system is performed by one of its event system, the guarantee condi-
tion Gsκ of each event system must be a subset of the overall guarantee condition G
(Premise 4). The overall postcondition must be a logical consequence of all postcondi-
tions of event systems (Premise 5). An action transition of an event system κ should be
defined in the rely condition of another event system κ′, where κ 6= κ′ (Premise 6).

Finally, the soundness theorem for a specification ] relates rely-guarantee specifica-
tions proven on the proof system with its validity. The proof of the theorem is presented
in detail in Appendix A.

Theorem 1 (Soundness). Σ ` ] sat 〈pre,R,G, pst〉 =⇒ Σ |= ] sat 〈pre,R,G, pst〉

3.3 Invariant Verification

In many cases, we would like to show that CRSs preserve certain data invariants. Since
CRSs may not be closed systems, i.e. their environment may change the system state
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that is represented by rely conditions of CRSs, the reachable states of CRSs are depen-
dent on both the initial states and the environment. We define as follows that a CRS PS
with static information Σ, starting up from a set of initial states init under an environ-
ment R, preserves an invariant inv when its reachable states satisfy the predicate:

∀s0 x0 $. $ ∈ Ψ(Σ,PS, s0, x0) ∩A(Σ, init, R) −→ (∀i < len($). inv(s$i))

In this definition, $ denotes an arbitrary computation of PS from a set of initial
states init and under an environment R. It requires that all states in $ satisfy the in-
variant inv.

To show that inv is preserved by a system PS , it suffices to show the invariant
verification theorem as follows. This theorem indicates that (1) the system satisfies its
rely-guarantee specification 〈init, R,G, post〉, (2) inv initially holds in the set of initial
states, and (3) each action transition as well as each environment transition preserve
inv. Later, by the proof system of PiCore, invariant verification is decomposed to the
verification of individual events.

Theorem 2 (Invariant Verification). For formal specification PS and Σ, a state set
init, a rely condition R, and inv, if

– Σ ` PS sat 〈init, R,G, post〉.
– init ⊆ {s. inv(s)}.
– stable({s. inv(s)}, R) and stable({s. inv(s)}, G) are satisfied.

then inv is preserved by PS w.r.t. init and R.

4 Integrating Concrete Languages

We present the rely-guarantee interface of PiCore framework in this section as well as
the integration of the IMP and CSimpl languages.

4.1 Rely-guarantee Interface of PiCore Framework

To implement flexible integration of languages for programs of events body, PiCore
provides a rely-guarantee interface that the program languages must respect. The inter-
face is an abstraction for common rely-guarantee components required by PiCore (Fig.
5). These components are represented as a set of parameters and their assumptions.
The language, semantics, proof rules and soundness proof of PiCore in Section 3 are
developed using this interface.

Following this interface, third-part languages and their rely-guarantee proof sys-
tems are embedded into PiCore as interpretations using an adapter that implements the
interface. Since the languages may have existed for years, they are not necessary to be
completely consistent with the interface. For each language that we want to integrate
it is necessary to provide a rely-guarantee adapter to bridge the differences of rely-
guarantee components between PiCore and the languages. The adapter implements the
interface by delegating functionality of the event language to the integrated language.
This architecture allows to integrate existing languages without modifying their speci-
fication, semantics, and rely-guarantee inference system.
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Fig. 5: PiCore Framework and its Integration with Imperative Languages

The interface requires specifications and assumptions for four differentiated ele-
ments: language definition (syntax and semantics), rely-guarantee definitions (compu-
tation and rely-guarantee validity), rely-guarantee proof rules, and their soundness.

As a parametric framework, PiCore does not define the syntax for languages of pro-
grams. It only requires a notation to represent the termination of programs, which is
denoted as ⊥ in PiCore (Parameter 1 in Table 1). PiCore also needs the transition rela-
tions representing the event behaviour (event action) and the environment (Parameters
2 and 3). To reason about event behaviors, PiCore assumes that (1) program ⊥ cannot
take a step to another state (Assumption 1 in Table 2), (2) if a program P takes an ac-
tion transition, the program is changed in the next configuration (Assumption 2), and
(3) environment transitions do not change the program itself (Assumption 3).

Since the body of events in PiCore is specified using external languages, computa-
tions and the reasoning of events are dependent on those languages. PiCore requires the
specification for computation of programs (Parameters 4 and 5) and assumes that (1) a
computation of any program is not empty (Assumption 4), (2) if $ is a computation of
a language and the program of its first configuration is P , then $ is a computation for
the program P (Assumption 5), and (3) there are three constructions for computation of
programs (Assumption 6), which is similar to the definition of events we have presented
in Section 3.

Finally, the interface requires the components related to the validity of rely-guarantee
specification and the proof rules (Parameters 6 – 9). The definitions of the assume/com-
mit functions and the validity are similar to those in PiCore (see Section 3), and are
relaxed to be not necessarily equivalent. PiCore requires that the rely-guarantee proof
rules in languages are sound (Assumption 10). Other rely-guarantee components, such
as rely and guarantee condition, are defined in the above parameters at the same time.

4.2 Integrating the IMP and CSimpl languages

To integrate a language and its rely-guarantee framework into PiCore, we first create
an adapter for the language providing the PiCore interface. For each parameter in the
interface, there is a corresponding definition (or function) in the adapter instantiating the
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Table 1: Parameters of PiCore
No. Name Notation No. Name Notation
(1) Terminating statement ⊥ (2) Program transition Σ ` (P, s)−→p(Q, t)

(3) Environment transition Σ ` (P, s)
e−→p (Q, t) (4) Computations Ψ(Σ)

(5) Computations of a program Ψ(Σ,P ) (6) Assume A(Σ, pre,R)
(7) Commit C(Σ,G, pst) (8) Validity Σ |= P sat 〈pre,R,G, pst〉
(9) Proof rule Σ ` P sat 〈pre,R,G, pst〉

Table 2: Assumptions of Parameters
(1) ¬(Σ ` (⊥, s)−→p(P, t)) (2) ¬(Σ ` (P, s)−→p(P, t))

(3) Σ ` (P, s)
e−→p (Q, t) =⇒ P = Q (4) [] /∈ Ψ(Σ)

(5) $0 = (P, s) ∧$ ∈ Ψ(Σ) =⇒ $ ∈ Ψ(Σ,P )

(6)

(∃P s. $ = [(P, s)]) ∨ (∃P t xs s. $ = (P, s)#(P, t)#xs ∧ (P, t)#xs ∈ Ψ(Σ))∨
(∃P s Q t xs. $ = (P, s)#(Q, t)#xs ∧Σ ` (P, s)−→p(Q, t) ∧ (Q, t)#xs ∈ Ψ(Σ)))

=⇒ $ ∈ Ψ(Σ)
(7) Σ |= P sat 〈pre,R,G, pst〉 =⇒ ∀s. Ψ(Σ,P, s) ∩ A(Σ, pre,R) ⊆ C(Σ,G, pst)

(8)
(∀i < len($)− 1. (Σ ` $i

e−→p $i+1) −→ (s$i
, s$i+1

) ∈ R) ∧ s$0
∈ pre

=⇒ $ ∈ A(Σ, pre,R)

(9)
$ ∈ C(Σ,G, pst) =⇒ (∀i < len($)− 1. (Σ ` $i−→p$i+1) −→ (s$i

, s$i+1
) ∈ G)

∧ (]last($) = b⊥c −→ s$n ∈ pst)
(10) Σ ` P sat 〈pre,R,G, pst〉 =⇒ Σ |= P sat 〈pre,R,G, pst〉

parameter. Moreover, the adapter provides the necessary set of lemmas and theorems to
show that the instances of the interface specifications satisfy the interface assumptions.

In the mechanized implementation of PiCore in Isabelle/HOL, we use locales to
create the framework, where parameters and assumptions of PiCore are represented as
parameters and assumptions of locales. Locales are the Isabelle’s approach for deal-
ing with parametric theories. They may be instantiated by assigning concrete data to
parameters, and conclusions of locales will be propagated to the current theory or the
current proof context. This is called locale interpretation. Using the notion of locales,
we create PiCore instances by interpreting the PiCore locale using adapters for IMP
and CSimpl.

Since the definitions of rely-guarantee components in IMP [23] are consistent with
the PiCore interface, except that there is no static informationΣ in IMP, the adapter for
IMP is straightforward from its rely-guarantee specification, we omit the details here
and the interested reader can refer to the Isabelle/HOL sources.

More interesting is CSimpl that supports most of the features of real world pro-
gramming languages including exceptions, and is substantially more complex than IM-
P. Here, we show the adapter for CSimpl. The language and its rely-guarantee proof
system are presented in detail in [24]. The abstract syntax of CSimpl is defined as in
Fig. 6 in terms of states, of type ’s; a set of fault types, of type ’f; and a set of procedure
names of type ’p. Type (’s,’p,’f) config defines the configuration used in its transition se-
mantics and (’s,’p,’f) body denoted as Γ defines the procedure declarations as mapping
from procedure names to CSimpl programs. (’s,’p,’f,’e) confs defines the type of com-
putations. To support reasoning about procedure invocations, CSimpl uses the notation
Θ to maintain the rely-guarantee specification for procedures. The validity in CSimpl
requires that each procedure satisfies its specification.
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datatype ( ′s, ′p, ′f ) com = Skip | Throw | Basic ′s ⇒ ′s | Spec ( ′s × ′s) set
| Seq ( ′s , ′p, ′f ) com ( ′s, ′p, ′f ) com | Cond ′s bexp ( ′s, ′p, ′f ) com ( ′s, ′p, ′f ) com
|While ′s bexp ( ′s, ′p, ′f ) com | Call ′p | DynCom ′s ⇒ ( ′s, ′p, ′f ) com
| Guard ′f ′s bexp ( ′s, ′p, ′f ) com | Catch ( ′s, ′p, ′f ) com ( ′s, ′p, ′f ) com
| Await ′s bexp ( ′s, ′p, ′f ) com

datatype ( ′s, ′f ) xstate = Normal ′s | Abrupt ′s | Fault ′f | Stuck
type-synonym( ′s, ′p, ′f ) config = ( ′s, ′p, ′f )com × ( ′s, ′f ) xstate
type-synonym ( ′s, ′p, ′f ) body = ′p ⇒ ( ′s, ′p, ′f ) com option
type-synonym ( ′s, ′p, ′f , ′e) confs = ( ′s, ′p, ′f , ′e) body ×(( ′s, ′p, ′f , ′e) config) list

Fig. 6: Syntax and state definition of the CSimpl Language [24]

In the adapter, we first use the pair (Γ,Θ) to instantiate the environment Σ in Pi-
Core. We instantiate the termination statement as the Skip command in CSimpl. The
program transition in CSimpl is Γ `c (P, s) −→ (Q, t), is adapted as (Γ,Θ) `cI
(P, s) −→ (Q, t) ≡ Γ `c (P, s) −→ (Q, t). CSimpl semantics for programs can tran-
sit from a Normal state to a different type. However, it does not allow transitions from
a non Normal state to a different type of state. Therefore, the environment transition in
CSimpl is defined as follows.{

Γ `c (P,Normal s) −→e (P, t)

(∀t′. t 6= Normal t′) =⇒ Γ `c (P, t) −→e (P, t)

To adapt the restricted environment transition, we first define the environment tran-
sition in the adapter as (Γ,Θ) `cI (P, s) −→e (P, t), which allows any state transition
and is compatible with that in the interface. Then, we restrict the rely condition in the
definition of proof rules in the adapter to bridge this difference, which will be discussed
later. Based on the transition functions, the computation function Ψ of the adapter is
defined in the same form as in CSimpl.

The rely-guarantee specification in CSimpl is in the form [p,R,G, (q, a)], where
the postcondition (q, a) is a pair of state sets. The set q constrains the final state if the
program terminates as Skip representing a normal state, whilst a constrains abrupt ter-
minations in an exception with the command Throw. The assume and commit functions
in CSimpl are like PiCore, but considering the fault states and abrupt termination. The
validity function of CSimpl is defined in the same form as in PiCore. For procedure
invocations, CSimpl defines another validity function using the general one, which also
requires that each procedure satisfies its rely-guarantee specification.

We define the assume, commit and validity functions in the adapter as the same
form as in PiCore. In CSimpl preconditions are over normal states. For type consistency
PiCore does not impose that restriction, but rather it is enforced by the adapter to bridge
the difference, which will be discussed later. PiCore does restrict the final statement to
Skip thus exceptions have to be handled at program level. This restriction is motivated
by the second assumption in the rule EVTSET for PiCore proof system in Figure 4, since
postconditions of events must imply their preconditions, and preconditions in CSimpl
are set of normal states, a final configuration of an event cannot throw an exception.

Finally, based on the definition of proof rules Γ ,Θ `/F P sat [q, R, G, q,a] in CSim-
pl, we define that in the adapter as follows. (1) The validity in CSimpl only concerns
preconditions of Normal states, so we restrict the precondition p to Normal. (2) Pro-
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grams of an event body cannot throw exceptions to the event level, so final states when
reaching the final statement Skip are Normal. Thus, we restrict the postcondition q to
Normal. (3) Events assume the normal execution of their program body, and further-
more the program cannot fall into a Fault state. So we assume the Fault set F to be
empty. In addition, the program P should satisfy its rely-guarantee specification in C-
Simpl. (4) The environment transition in CSimpl does not allow transitions from a non
Normal state to a different type of state, we represent it in the rely condition R. (5)
Finally, the rely-guarantee specification for each procedure in Θ has to be satisfied.

(Γ ,Θ) `I P satp [p, R , G , q] ≡

(1)︷ ︸︸ ︷
(p ⊆ Normal ‘ UNIV) ∧

(2)︷ ︸︸ ︷
(q ⊆ Normal ‘ UNIV) ∧

(3)︷ ︸︸ ︷
(Γ ,Θ `/{} P sat [{s. Normal s ∈ p}, R , G , {s. Normal s ∈ q}, UNIV ]) ∧

(4)︷ ︸︸ ︷
(∀ (s,t)∈R . s /∈ Normal ‘ UNIV −→ s = t) ∧

(5)︷ ︸︸ ︷
(∀ (c,p,R ,G ,q,a)∈ Θ. Γ |=/{} (Call c) sat [p, R , G , q,a])

To interpret the PiCore framework using the adapter, we have to show that the as-
sumptions in Table 2 are preserved on the adapted definitions. The preservation of as-
sumptions 1 – 9 are straightforward. To show assumption 10, we prove that

(Γ ,Θ) `I P satp [p, R , G , q] =⇒ (Γ ,Θ) |=I P satp [p, R , G , q]

5 Concurrent Memory Management of Zephyr RTOS

In this section, we use πIMP, the instantiation of PiCore with IMP, to formally specify
and verify the concurrent memory management of Zephyr RTOS. The size of the C
code is ≈ 400 lines of code. During the formal verification, we found 3 bugs in the C
code of Zephyr: an incorrect block split, an incorrect return, and non-termination of a
loop in the k mem pool alloc service (see Appendix B). The first two bugs are critical
and have been repaired in the latest release of Zephyr.

The buddy memory allocation can split large blocks into smaller ones to fit as best
as possible the requested size. This allows blocks of different sizes to be allocated and
released efficiently while limiting memory fragmentation concerns. The memory is or-
ganized by levels, each “level n” block is a quad-block that can be split into four smaller
“level (n+1)” blocks of equal size. This process is repeated until blocks reach a mini-
mum level for which splitting is not possible. In our formal specification, we define the
structure of a memory pool as illustrated in Fig. 7. The top of the figure shows the real
memory of the first block at level 0.

Thread preemption and fine-grained locking make kernel execution of memory ser-
vices to be concurrent. Zephyr provides two kernel services k mem pool alloc and k
mem pool free, for memory allocation and release respectively. The main part of the C
code of k mem pool alloc is shown in Appendix B. When an application requests for
a memory block, Zephyr first computes two levels necessary for the operation. One is
alloc l, the level with the size of the smallest block that will satisfy a request. The other
level is free l and it is the lowest level containing free memory blocks, with free
l 6 alloc l. Due to concurrency, when a service tries to allocate a free block blk from
level free l, blocks at that level may be allocated or merged into a bigger block by other
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Fig. 7: Structure of Memory Pools

concurrent threads. In such case the service will back out to retry. If blk is successfully
locked for allocation, then it is broken down to level alloc l. Allocation supports a time-
out parameter to allow threads waiting for that pool for a period of time when the call
does not succeed. If the allocation fails and the timeout is not K NO WAIT, the thread
is suspended and the context is switched to another thread.

We define a rich set of invariants on the kernel state clarifying the constraints and
consistency of quad trees, free block lists, memory pool configuration, and waiting
threads. From the well-shaped properties of quad trees, we can derive a critical property
to prevent memory leaks, i.e., memory blocks cover the whole memory address of the
pool, but not overlap each other. Memory blocks of a memory pool mp are a partition
of the pool where for any memory address addr in the address space of a memory pool,
i.e. addr < n max ∗max sz, there is one and only one memory block whose address
space contains addr. The predicate is defined as follows.
addr-in-block mp addr i j ≡
i < length (levels mp) ∧ j < length (bits (levels mp ! i)) ∧ (is memblock(bits (levels mp ! i) ! j))
∧ addr ∈ {j ∗ (max-sz mp div (4 ˆ i)) ..< Suc j ∗ (max-sz mp div (4 ˆ i))}
mem-part s ≡ ∀ p∈mem-pools s. let mp = mem-pool-info s p in

(∀ addr < n-max mp ∗ max-sz mp. (∃ !(i,j). addr-in-block mp addr i j) )
From the invariants of the well-shaped bitmap, we derive the general property for

the memory partition.

Theorem 3 (Memory Partition). For any kernel state s, If the memory pools in s are
consistent in their configuration, and their bitmaps are well-shaped, the memory pools
satisfy the partition property in s, i.e.

inv mempool info s ∧ inv bitmap s ∧ inv bitmap0 s ∧ inv bitmapn s =⇒ mem part s

In the formal specification, we consider a scheduler S and a set of threads t1, ..., tn.
A user thread ti invoke allocation/release services, thus the event system for ti is
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esysti ≡(
⋃
blk. {mem pool free[blk]@ti}) ∪

(
⋃

(p, sz, tmout). {mem pool alloc[p, sz, tmout]@ti})
which is a set of alloc and free events, where the input parameters for these events

correspond with the arguments of the service implementation in the C code. Together
with the threads we model the event service for the scheduler esyssched consisting of
a unique event sched whose argument is a thread t to be scheduled when it is in the
READY state. The formal specification of the memory management is thus defined as:
Sys-Spec≡ λ k. case k of (T ti)⇒ esysti | S ⇒ esyssched. This is much simpler than
the specification obtained from a non-event oriented language.

We refer readers to Appendix C for the main part of the C code of k mem pool
free and to Appendix D or the Isabelle/HOL sources for the complete specification of
the service. Events are parametrized by a thread identifier used to control access the
execution context of the thread invoking it.

Using the compositional reasoning of πIMP, correctness of Zephyr memory man-
agement can be specified and verified with the rely-guarantee specification of each
event. The functional correctness of a kernel service is specified by its pre/post con-
ditions. The preservation of invariants, memory configuration, and separation of local
variables is specified in the guarantee condition of each service. Although IMP does
not have proof rules for loop termination, we use a logical variable α to parametrize
the loop invariants and prove the termination of loop statements in Zephyr by finding a
convergent relation to show that the number of iterations is finite.

The guarantee condition for both memory services is defined as:

Mem-pool-free-guar t ≡

(1)︷︸︸︷
Id ∪ (

(2)︷ ︸︸ ︷
gvars conf stable ∩

{(s,r). (

(3.1)︷ ︸︸ ︷
cur s 6= Some t −→ gvars-nochange s r ∧ lvars-nochange t s r )

∧ (

(3.2)︷ ︸︸ ︷
cur s = Some t −→ inv s −→ inv r ) ∧ (

(4)︷ ︸︸ ︷
∀ t ′. t ′ 6= t −→ lvars-nochange t ′ s r ) })

This relation states that an step from alloc or free may not change the state (1),
e.g., selecting branch on a conditional statement. If it changes the state then: (2) static
configuration of memory pools in the model does not change; (3.1) if the scheduled
thread is not the thread invoking the event then its local variables do not change; (3.2)
if it is, then the relation preserves the memory invariant; (4) a thread does not change
the local variables of other threads.

Using PiCore and IMP proof rules we verify that the invariant is preserved by all
the events. Additionally, we prove that when starting in a valid memory configuration
given by the invariant, and if the service does not return an error code, then it returns a
valid memory block with size bigger or equal than the requested capacity.

A property verification is carried out by inductively applying the proof rules for each
system event and discharging the proof obligations the rules generate. Typically, these
proof obligations require to prove stability of the pre and postcondition to check that
changes of the environment preserve them, and showing that a statement modifying a
state from the precondition gets a state belonging to the postcondition. A detailed proof
sketch of the free service is shown in Appendix D.
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6 Evaluation and Conclusion

Evaluation. We use Isabelle/HOL as the specification and verification system. Al-
l derivations of our proofs have passed through the Isabelle proof kernel. We use ≈
9,200 lines of specification and proof (LOSP) to develop the PiCore framework. The
IMP language and its rely-guarantee proof system consist of ≈ 2,400 LOSP, and C-
Simpl ≈ 15,000 LOSP. The two parts of specification and proof are completely reused
in πIMP and πCSimpl respectively. The adapter of IMP is ≈ 650 LOSP including new
proof rules and their soundness as well as a concrete syntax. The adapter of CSimpl is
≈ 400 LOSP. Finally, we develop ≈ 17,600 LOSP for the Zephyr case study, 40 times
than the lines of the C code due to the in-kernel concurrency, where invariant proofs
represent the largest part.

Related works. The rely-guarantee approach has been mechanized in Isabelle/HOL
(e.g. [23,26,14,13,24]) and Coq (e.g. [18,20]). In [14,13], an abstract algebra of atomic
steps is developed, and rely/guarantee concurrency is an interpretation of the algebra.
To allow a meaningful comparison of rely-guarantee semantic models, two abstrac-
t models for rely-guarantee are developed and mechanized in [26]. The two works do
not consider the concrete imperative languages for rely-guarantee. The works [23,20]
mechanize the rely-guarantee approach for simple imperative languages. Later, a rely-
guarantee proof system for CSimpl [24], a generic and realistic imperative language by
extending Simpl, is developed in Isabelle/HOL. These mechanizations focus on imper-
ative languages for pure programs. Two of them [23,24] with mechanization of proof
system in Isabelle/HOL have been integrated in PiCore.

Refinement of reactive systems [5] and the subsequent Event-B approach [2] pro-
pose a refinement-based formal method for system-level modeling and analysis. In [15],
an Event-B model is created to mimic rely-guarantee style reasoning for concurrent pro-
grams, but not to provide a rely-guarantee framework for Event-B. The rely-guarantee
reasoning for event-based applications has been studied in [8,11,10,9]. The definition
of events is similar to PiCore. They extend a simple, sequential, imperative language
by primitives for announcing and consuming events, announce(e) and consume(e(x))
where e is an event. Therefore, events are triggered by imperative programs in anoth-
er event. This is very different from the reactive semantics in PiCore where the sys-
tem is non-deterministically executed simulating a real reactive system. Moreover, the
language to specify events in these works is a simple imperative language, whilst Pi-
Core has an open interface for the integration and reusability of different languages and
frameworks.

Conclusion and future work. In this paper, we propose an event-based rely-guarantee
framework for concurrent reactive systems. This approach is open to the specification
of event behaviours. It provides an interface to integrate systems for specification and
reasoning at that level that eases formal methods reusability. We have mechanized the
integration of the IMP and CSimpl languages and their proof systems into PiCore in the
Isabelle/HOL theorem prover. We show the simplicity of events to represent concurrent
reactive systems and the ability of PiCore for realistic systems in the verification of
the concurrent buddy memory allocation of Zephyr RTOS. As future work, we plan to
extend PiCore to support more event structures and step-wise refinement.
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Appendix A Proof of Soundness

The soundness of rules for events is straightforward and proved by the assumptions in
the interface. To prove soundness of rules for event systems. First, we show how to
decompose a computation of event systems into computations of its events.

We first define an equivalent relation on computations as follows. Here, we concern
the state, event context, and transitions, but not the specification of a configuration.

Definition 1 (Simulation of Computations). A computation$1 is a simulation of$2,
denoted as $1 � $2, if len($1) = len($2) and ∀i < len($1) − 1. s$1i

= s$2i
∧

x$1i
= x$2i

∧ ($1i
δ−→ $1i+1) = ($2i

δ−→ $2i+1).

In order to decompose computations of event systems to those of events, we define
serialization of events based on the simulation of computations.

Definition 2 (Serialization of Events). A computation $ of event systems is a serial-
ization of a set of events {E1, E2, ..., En}, denoted by $ ≪ {E1, E2, ..., En}, iff there
exist a set of computations $1, ..., $m, where for 1 ≤ i ≤ m there exists 1 ≤ k ≤ n
that $i ∈ Ψ(Σ, Ek), such that $ � $1#$2#...#$m.

Then, we can decompose a computation of an event system into a set of computation
of its events as follows.

Lemma 1. For any computation $ of an event system S, $≪ evts(S).

The soundness of the EVTSEQ rule is proved by two cases. For any computation $
of “E . S”, the first case is that the execution of event E does not finish in $. In such
a case, $ ≪ {E}. By the first premise of this rule, we can prove the soundness. In
the second case, the execution of event E finishes in $. In such a case, we have $ =
$1#$2, where $1 ≪ {E} and $2 ≪ evts(S). By the two premises of this rule,
we can prove the soundness. The soundness of the EVTSET rule is complicated. From
Lemma 1, we have that for any computation$ of the event set,$ � $1#$2#...#$m,
for 1 ≤ i ≤ m there exists 1 ≤ k ≤ n that $i ∈ ΨE(Ek). When $ is in A(Σ, pre,R),
from ∀i ≤ n, j ≤ n. pstsi ⊆ presj , ∀i ≤ n. pre ⊆ presi, and ∀i ≤ n. R ⊆ Rsi, we
have that there is one k for each $i that $i is in A(presk, Rsk). By the first premise in
the EVTSET rule, we have $i is in C(Σ,Gsk, pstsk). Finally, with ∀i ≤ n. Gsi ⊆ G
and ∀i ≤ n. pstsi ⊆ pst, we have that $ is in C(Σ,G, pst).

To prove the soundness of the PAR rule, we first use conjoin as follows to decom-
pose a computation of parallel event systems into computations of its event systems.
Computations of a set of event systems can be combined into a computation of the par-
allel composition of them, iff they have the same state and event context sequences, as
well as they do not have the action transition at the same time. The resulting compu-
tation of PS also has the same state and event context sequences. Furthermore, in this
computation a transition is an action transition on core κ if this is the action in the com-
putation of event system κ at the corresponding position; a transition is an environment
transition if this is the case in all computations of event systems at the corresponding
position. By the definition, we have that the semantics is compositional as shown in
Lemma 2.
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Definition 3. A computation$ of a parallel event systemPS and a set of computations
$̂ : K → ΨS conjoin, denoted by $ ∝ $̂, iff

– ∀κ. len($) = len($̂(κ)).
– ∀κ, j < len($). s$j = s$̂(κ)j ∧ x$j = x$̂(κ)j .
– ∀κ, j < len($). ]$j

(κ) = ]$̂(κ)j .
– for any j < len($)− 1, one of the following two cases holds:
• $j

e−→ $j+1, and ∀κ. $̂(κ)j
e−→ $̂(κ)j+1.

• $j
t@κ1−→ $j+1, $̂(κ1)j

t@κ1−→ $̂(κ1)j+1, and ∀κ 6= κ1. $̂(κ)j
e−→ $̂(κ)j+1.

Lemma 2. The semantics of PiCore is compositional, i.e., Ψ(Σ,PS, s, x) = {$ |
(∃$̂ | (∀κ. $̂(κ) ∈ Ψ(Σ,PS(κ), s, x)) ∧$ ∝ $̂)}.

Finally, the soundness of the PAR rule is proved by a similar way to [28,23].

Appendix B The C Source Code and Bugs of Memory Allocation
in Zephyr

1
2 static int pool_alloc(struct k_mem_pool *p, struct k_mem_block *block,
3 size_t size)
4 {
5 size_t lsizes[p->n_levels];
6 int i, alloc_l = -1, free_l = -1, from_l;
7 void *blk = NULL;
8
9 /* Walk down through levels, finding the one from which we

10 * want to allocate and the smallest one with a free entry
11 * from which we can split an allocation if needed. Along the
12 * way, we populate an array of sizes for each level so we
13 * don’t need to waste RAM storing it.
14 */
15 lsizes[0] = _ALIGN4(p->max_sz);
16 for (i = 0; i < p->n_levels; i++) {
17 if (i > 0) {
18 lsizes[i] = _ALIGN4(lsizes[i-1] / 4);
19 }
20
21 if (lsizes[i] < size) {
22 break;
23 }
24
25 alloc_l = i;
26 if (!level_empty(p, i)) {
27 free_l = i;
28 }
29 }
30
31 if (alloc_l < 0 || free_l < 0) {
32 block->data = NULL;
33 return -ENOMEM;
34 }
35
36 /* Iteratively break the smallest enclosing block... */
37 blk = alloc_block(p, free_l, lsizes[free_l]);
38
39 if (!blk) {
40 /* This can happen if we race with another allocator.
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41 * It’s OK, just back out and the timeout code will
42 * retry. Note mild overloading: -EAGAIN isn’t for
43 * propagation to the caller, it’s to tell the loop in
44 * k_mem_pool_alloc() to try again synchronously. But
45 * it means exactly what it says.
46 */
47 return -EAGAIN;
48 }
49
50 for (from_l = free_l;
51 level_empty(p, alloc_l) && from_l < alloc_l;
52 from_l++) {
53 blk = break_block(p, blk, from_l, lsizes);
54 }
55
56 /* ... until we have something to return */
57 block->data = blk;
58 block->id.pool = pool_id(p);
59 block->id.level = alloc_l;
60 block->id.block = block_num(p, block->data, lsizes[alloc_l]);
61 return 0;
62 }
63
64 int k_mem_pool_alloc(struct k_mem_pool *p, struct k_mem_block *block,
65 size_t size, s32_t timeout)
66 {
67 int ret, key;
68 s64_t end = 0;
69
70 __ASSERT(!(_is_in_isr() && timeout != K_NO_WAIT), "");
71
72 if (timeout > 0) {
73 end = _tick_get() + _ms_to_ticks(timeout);
74 }
75
76 while (1) {
77 ret = pool_alloc(p, block, size);
78
79 if (ret == 0 || timeout == K_NO_WAIT ||
80 ret == -EAGAIN || (ret && ret != -ENOMEM)) {
81 return ret;
82 }
83
84 key = irq_lock();
85 _pend_current_thread(&p->wait_q, timeout);
86 _Swap(key);
87
88 if (timeout != K_FOREVER) {
89 timeout = end - _tick_get();
90
91 if (timeout < 0) {
92 break;
93 }
94 }
95 }
96
97 return -EAGAIN;
98 }

During the formal verification, we found 3 bugs and an integrity issue in the C code
of Zephyr, which are shown as below.

(1) Incorrect block split: this bug is located in the loop in Line 51 of the k mem
pool alloc service. The level empty function checks if there are blocks in the free list
at level alloc l. Concurrent threads may release a memory block at that level making
level empty(p, alloc l) to return false and stopping the loop. In such case, it allocates a
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memory block of a bigger capacity at a level i but it still sets the level number of the
block as alloc l at Line 59. The service allocates a larger block to the requesting thread
causing an internal fragmentation of max sz/4i −max sz/4alloc l bytes. When this
block is released, it will be inserted into the free list at level alloc l but not level i
causing an external fragmentation of max sz/4i −max sz/4alloc l. The bug is fixed
by removing the condition level empty(p, alloc l) in our specification.

(2) Incorrect return from k mem pool alloc: this bug is found at Line 80. When
a suitable free block is allocated by another thread, the pool alloc function returns -
EAGAIN at Line 47 to ask the thread to retry the allocation. When a thread invokes k
mem pool alloc in FOREVER mode and this case happens, the service returns -EAGAIN
immediately. However, a thread invoking k mem pool alloc in FOREVER mode should
keep retrying forever when failed. We repair the bug by removing the condition ret ==
−EAGAIN at Line 80. As explained in the comments of the C Code (Lines 40 - 46),
-EAGAIN should not be returned to threads invoking the service. Moreover, the return
-EAGAIN at Line 97 is actually the case of time out. Thus, we introduce a new return
code TIMEOUT in our specification.

(3) Non-termination of k mem pool alloc: The loop statement at Lines 76 - 95
should terminate in certain cases, which are actually violated in the C code. When a
thread requests a memory block in FOREVER mode and the requested size is larger
than max sz, the maximum size of blocks, the loop at Lines 76 - 95 will never finish
since pool alloc always returns -ENOMEM. The reason is that the “return -ENOMEM”
at Line 33 does not distinguish two cases, alloc l < 0 and free l < 0. In the first case,
the requested size is larger than max sz and the kernel service should return immedi-
ately. In the second case, there are no free blocks larger than the requested size and the
service tries forever until some free block available. We repair the bug by splitting the if
statement at Lines 31 - 34 into two cases and introducing a new return code ESIZEERR
in our specification. Then, we change the condition by ESIZEERR at Lines 79 - 80.

Appendix C The C Source Code of Memory Release in Zephyr

1
2 static void free_block(struct k_mem_pool *p, int level, size_t *lsizes, int bn)
3 {
4 int i, key, lsz = lsizes[level];
5 void *block = block_ptr(p, lsz, bn);
6
7 key = irq_lock();
8
9 set_free_bit(p, level, bn);

10
11 if (level && partner_bits(p, level, bn) == 0xf) {
12 for (i = 0; i < 4; i++) {
13 int b = (bn & ˜3) + i;
14
15 clear_free_bit(p, level, b);
16 if (b != bn &&
17 block_fits(p, block_ptr(p, lsz, b), lsz)) {
18 sys_dlist_remove(block_ptr(p, lsz, b));
19 }
20 }
21
22 irq_unlock(key);
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23 free_block(p, level-1, lsizes, bn / 4); /* tail recursion! */
24 return;
25 }
26
27 if (block_fits(p, block, lsz)) {
28 sys_dlist_append(&p->levels[level].free_list, block);
29 }
30
31 irq_unlock(key);
32 }
33
34 void k_mem_pool_free(struct k_mem_block *block)
35 {
36 int i, key, need_sched = 0;
37 struct k_mem_pool *p = get_pool(block->id.pool);
38 size_t lsizes[p->n_levels];
39
40 /* As in k_mem_pool_alloc(), we build a table of level sizes
41 * to avoid having to store it in precious RAM bytes.
42 * Overhead here is somewhat higher because free_block()
43 * doesn’t inherently need to traverse all the larger
44 * sublevels.
45 */
46 lsizes[0] = _ALIGN4(p->max_sz);
47 for (i = 1; i <= block->id.level; i++) {
48 lsizes[i] = _ALIGN4(lsizes[i-1] / 4);
49 }
50
51 free_block(get_pool(block->id.pool), block->id.level,
52 lsizes, block->id.block);
53
54 /* Wake up anyone blocked on this pool and let them repeat
55 * their allocation attempts
56 */
57 key = irq_lock();
58
59 while (!sys_dlist_is_empty(&p->wait_q)) {
60 struct k_thread *th = (void *)sys_dlist_peek_head(&p->wait_q);
61
62 _unpend_thread(th);
63 _abort_thread_timeout(th);
64 _ready_thread(th);
65 need_sched = 1;
66 }
67
68 if (need_sched && !_is_in_isr()) {
69 _reschedule_threads(key);
70 } else {
71 irq_unlock(key);
72 }
73 }

Appendix D Specification and Proof Sketch of k mem pool free

The formal specification of k mem pool free (in black color) and its rely-guarantee
proof sketch (in blue color) are shown as follows.

Mem-pool-free-pre t ≡ {| ´inv ∧ ´allocating-node t = None ∧ ´freeing-node t = None|}
EVENT Mem-pool-free [Block b] @ (T t)
WHEN

pool b ∈ ´mem-pools
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∧ level b < length (levels (´mem-pool-info (pool b )))
∧ block b < length (bits (levels (´mem-pool-info (pool b ))!(level b )))
∧ data b = block-ptr (´mem-pool-info (pool b ))

((ALIGN4 (max-sz (´mem-pool-info (pool b )))) div (4 ˆ (level b ))) (block b )
THEN

Mem-pool-free-pre t ∩ {| g |} (* g is the guard condition of the event *)
(∗ here we set the bit to FREEING , so that other thread cannot mem-pool-free the same block

it also requires that it can only free ALLOCATED block ∗)
t I AWAIT (bits ((levels (´mem-pool-info (pool b ))) ! (level b ))) ! (block b

= ALLOCATED THEN
´mem-pool-info := set-bit-freeing ´mem-pool-info (pool b ) (level b ) (block b );;
´freeing-node := ´freeing-node (t := Some b )

END);;

mp-free-precond2 t b ≡ {| ´inv ∧ ´allocating-node t = None ∧ g ∧ ´freeing-node t = Some b |}
t I ´need-resched := ´need-resched (t := False);;
mp-free-precond3 t b ≡ (mp-free-precond2 t b ) ∩ {|´need-resched t = False|}
t I ´lsizes := ´lsizes(t := [ALIGN4 (max-sz (´mem-pool-info (pool b )))]);;
mp-free-precond4 t b ≡

mp-free-precond3 t b ∩ {|´lsizes t = [ALIGN4 (max-sz (´mem-pool-info (pool b )))]|}
FOR (t I ´i := ´i (t := 1 )); ´i t ≤ level b ; (t I ´i := ´i (t := ´i t + 1 )) DO

t I ´lsizes := ´lsizes(t := ´lsizes t @ [ALIGN4 (´lsizes t ! (´i t − 1 ) div 4 )])
ROF;;
mp-free-precond5 t b ≡ mp-free-precond3 t b ∩
{|(∀ ii<length (´lsizes t). ´lsizes t ! ii = (ALIGN4 (max-sz (´mem-pool-info (pool b ))))

div (4 ˆ ii )) ∧ length (´lsizes t) > level b |}
(∗ = = = start : free-block (pool , level , lsizes, block ); = = =∗)
t I ´free-block-r := ´free-block-r (t := True);;
mp-free-precond6 t b ≡ mp-free-precond5 t b ∩ {|´free-block-r t = True|}
t I ´bn := ´bn (t := block b );;
mp-free-precond7 t b ≡ mp-free-precond6 t b ∩ {|´bn t = block b |}
t I ´lvl := ´lvl (t := level b );;
mp-free-loopinv t b α

WHILE ´free-block-r t DO
mp-free-cnd1 t b α ≡ mp-free-loopinv t b α ∩ {| α > 0 |}

t I ´lsz := ´lsz (t := ´lsizes t ! (´lvl t));;
mp-free-cnd2 t b α ≡ mp-free-cnd1 t b α ∩ {| ´lsz t = ´lsizes t ! (´lvl t) |}

t I ´blk := ´blk (t := block-ptr (´mem-pool-info (pool b )) (´lsz t) (´bn t));;
mp-free-cnd3 t b α ≡ mp-free-cnd2 t b α ∩

{| ´blk t = block-ptr (´mem-pool-info (pool b )) (´lsz t) (´bn t) |}
t I ATOM
{V1} (V1 ∈ mp-free-cnd3 t b α ∩ {|´cur = Some t |})

´mem-pool-info := set-bit-free ´mem-pool-info (pool b ) (´lvl t) (´bn t);;
{V2} (V2 = V1 (|mem-pool-info :=

set-bit-free (mem-pool-info V1 ) (pool b ) (lvl V1 t) (bn V1 t)|))
´freeing-node := ´freeing-node (t := None);;

{V3} (V3 = V2 (|freeing-node := (freeing-node V2 )(t := None)|))
IF ´lvl t > 0 ∧ partner-bits (´mem-pool-info (pool b )) (´lvl t) (´bn t) THEN
(V3 ∈ {|NULL < ´lvl t ∧ partner-bits (´mem-pool-info (pool b )) (´lvl t) (´bn t)|})

mergeblock-loopinv V3 t b α ≡
{V . let minf0 = (mem-pool-info V3 )(pool b ); lvl0 = (levels minf0 ) ! (lvl V3 t);
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minf1 = (mem-pool-info V)(pool b ); lvl1 = (levels minf1 ) ! (lvl V3 t) in
(bits lvl1 = list-updates-n (bits lvl0 ) ((bn V3 t div 4 ) ∗ 4 ) (i V t) NOEXIST)

∧ (free-list lvl1 = removes (map (λii . block-ptr minf0 (lsz V3 t)
((bn V3 t div 4 ) ∗ 4 + ii )) [0 ..<(i V t)]) (free-list lvl0 ))

∧ (wait-q minf0 = wait-q minf1 ) ∧ (∀ t ′. t ′ 6= t −→ lvars-nochange t ′ V V3 )
∧ (∀ p. p 6= pool b −→ mem-pool-info V p = mem-pool-info V3 p)
∧ (∀ j . j 6= lvl V3 t −→ (levels minf0 )!j = (levels minf1 )!j )
∧ (V ,V3 )∈gvars-conf-stable ∧ i V t ≤ 4 ∧ ∧ α = 4 - i V t ...... }
FOR ´i := ´i (t := 0 ); ´i t < 4 ; ´i := ´i (t := ´i t + 1 ) DO
mergeblock-loopinv V3 t b α ∩ {| α > 0 |}
{V4} (V4 ∈ mergeblock-loopinv V3 t b α ∩ {| α > 0 |} )
´bb := ´bb (t := (´bn t div 4 ) ∗ 4 + ´i t);;
{V5} (V5 ≡ V4 (|bb := (bb V) (t :=(bn V4 t div 4 ) ∗ 4 + i V4 t)|) )
´mem-pool-info := set-bit-noexist ´mem-pool-info (pool b ) (´lvl t) (´bb t);;
{V6} (V6 ≡ V5 (| mem-pool-info :=

set-bit-noexist (mem-pool-info V5) (pool b) (lvl V5 t) (bb V5 t) |) )
´block-pt := ´block-pt (t := block-ptr (´mem-pool-info (pool b )) (´lsz t) (´bb t));;
{V7} (V7 ≡ V6 (|block-pt := (block-pt V6 )

(t :=block-ptr (mem-pool-info V6 (pool b )) (lsz V6 t) (bb V6 t))|) )
IF ´bn t 6= ´bb t ∧ block-fits (´mem-pool-info (pool b )) (´block-pt t) (´lsz t) THEN

´mem-pool-info := ´mem-pool-info ((pool b ) :=
remove-free-list (´mem-pool-info (pool b )) (´lvl t) (´block-pt t))

FI
ROF;;
mergeblock-loopinv V3 t b α ∩ {| α = 0 |}

´lvl := ´lvl (t := ´lvl t − 1 );;
´bn := ´bn (t := ´bn t div 4 );;
´mem-pool-info := set-bit-freeing ´mem-pool-info (pool b ) (´lvl t) (´bn t);;
´freeing-node := ´freeing-node (t := Some (|pool = (pool b ), level = (´lvl t),

block = (´bn t), data = block-ptr (´mem-pool-info (pool b ))
(((ALIGN4 (max-sz (´mem-pool-info (pool b )))) div (4 ˆ (´lvl t)))) (´bn t) |))

ELSE
{V3} ∩ − {|NULL < ´lvl t ∧ partner-bits (´mem-pool-info (pool b )) (´lvl t) (´bn t)|}
IF block-fits (´mem-pool-info (pool b )) (´blk t) (´lsz t) THEN

´mem-pool-info := ´mem-pool-info ((pool b ) :=
append-free-list (´mem-pool-info (pool b )) (´lvl t) (´blk t) )

FI;;
´free-block-r := ´free-block-r (t := False)

FI
END (* END of ATOM *)

OD (* END of WHILE free block r DO *)
mp-free-precond9 t b ≡Mem-pool-free-pre t ∩ {| g |}
(∗ = = = end of : free-block (pool , level , lsizes, block ); = = =∗)
t I ATOMIC
{Va} (Va ∈ mp-free-precond9 t b ∩ {|´cur = Some t |})
stm9-loopinv Va t b α ≡
{V . inv V ∧ cur V = cur Va ∧ tick V = tick Va ∧ (V ,Va)∈gvars-conf-stable
∧ freeing-node V t = freeing-node Va t ∧ allocating-node V t = allocating-node Va t
∧ (∀ p. levels (mem-pool-info V p) = levels (mem-pool-info Va p))
∧ (∀ p. p 6= pool b −→ mem-pool-info V p = mem-pool-info Va p)



25

∧ (∀ t ′. t ′ 6= t −→ lvars-nochange t ′ V Va)
∧ α = length (wait-q (´mem-pool-info (pool b ))) }

WHILE wait-q (´mem-pool-info (pool b )) 6= [] DO
stm9-loopinv Va t b α ∩ {| α > 0 |}

´th := ´th (t := hd (wait-q (´mem-pool-info (pool b ))));;
(∗ -unpend-thread (th ); ∗)
´mem-pool-info := ´mem-pool-info (pool b := ´mem-pool-info (pool b )

(|wait-q := tl (wait-q (´mem-pool-info (pool b )))|));;
(∗ -ready-thread (th ); ∗)
´thd-state := ´thd-state (´th t := READY);;

´need-resched := ´need-resched (t := True)
OD;;

stm9-loopinv Va t b α ∩ {| α = 0 |}
IF ´need-resched t THEN

reschedule (* reschedule threads(key) *)
FI

END (* END of ATOM *)
END
Mem-pool-free-post t ≡ {| ´inv ∧ ´allocating-node t = None ∧ ´freeing-node t = None|}
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